

Seminar on Research Findings Assisted by ASAHI GLASS FOUNDATION 2012/2013

Isolation and characterization of Arabidopsis thaliana genes to produce bacterium resistance plants

Fenny M. Dwivany, Ph.D

Dr. Rizkita Rahmi Esyanti

Aksarani 'Sa Pratiwi, S.Si

Maria A.E.D Sihotang, S.Si

Background

Banana Production and Export Graphic in 2005-2010 (FAOSTAT, 2011)

Banana Diseases

Figure 1. Banana plant with Panama disease (Vezina, 2012)

- Banana diseases as post harvest problems.
- One of major diseases caused by pathogenic fungi Fusarium oxysporum cubense (FOC) race 4.
- Causing banana wilt disease or Panama disease, a major loss for banana production in Indonesia.

(Dimyati *et al.*, 2001)

Objective and Hypothesis

Objective

 Isolate and characterize resistance genes from A. thaliana^{WT} through PCR method and in silico study

Hypothesis

 Resistance gene can be isolated from A.thaliana genome and cDNA through PCR methods and can be characterized using in silico study

Research Method

Characterization of Genes Sequences from GenBank and primer design

A. thaliana^{WT} total RNA isolation and cDNA synthesis

Gene fragment amplification using touchdown PCR based method

Cloning into pGEM-T Easy vector and transfer into *E. coli*

Sequencing of positive plasmid and sequence analysis

Gene Amplification

Figure 2. Electropherogram of API5 gene amplification using touchdown PCR method at 55-60° C (A) and Illustration of primer design for API5 amplification (B). M = ladder, F/R = sample with primer forward (F)/reverse (R), F1/R = sample with nested forward primer and reverse primer

Sequence Analysis

- BLAST Nucleotide analysis (BLASTn)
- BLAST Protein analysis (BLASTx)
- Motif analysis
- Phylogenetic Tree

BLAST Nucleotide (BLASTn) Analysis

Table 1. Alignment score result of BLASTn analysis from putative *API5* nucleotide sequence

Accesion Number	Species	Total Score	Query Coverage (%)	E-Value	Homology (%)
NM_12895 5.4	Arabidopsis thaliana Apoptosis Inhibitory protein (API5) (AT2G34040) mRNA	2050	88	0	98
AY_08521 9.1	<i>Arabidopsis thaliana</i> clone 13928 mRNA, complete sequence	2059	88	0	98
XM_00289 499	Arabidopsis lyrata subsp. Lyrata hypotethical protein, mRNA	Putat conside			
CP002685	Arabidopsis thaliana choromosom 2, complete sequence	with other <i>API5</i> gene in GenBank database			

BLAST Protein (BLASTx) Analysis

Table 2. Alignment score result of BLASTx analysis from putative API5 nucleotide sequence

Accession Number	Species		Query Coverage	E-value	Homology	
NP_56577 7.1	Apoptosis inhibitory protein 5 (API5) (Arabidopsis thaliana)		74%	0	96%	
XP_002893 545.1	Hypothetical protein ARALYDRAFT_47 (<i>Arabidopsis lyrata</i> subsp. lyrata)		66%	1e-174	82%	
XP_002331 951.1	Predicted protein (<i>Populus trichocar</i>	considered homologous with other <i>API5</i> protein in —				
EAY85554.	hypothetical protein Osl_06927 (<i>Oryz</i> sativa Indica Group)					
AAB86528 .1	Aac11 (Homo sapiens)		67%	9e-24	29%	

Motif Analysis of API5

Explanation:

= amino acid sequence

= LXXLL motif

= putative transactivation domain

= nuclear localization sequence

Figure 3. Illustration of motif alignment between putative API5 and another API5 protein from different species.

Phylogenetic Tree

Figure 4. Phylogenetic tree of API5 gene generated by Bayesian Method

Conclusion and Suggestion

Conclusion

• Partial *API5* have been successfully isolated from cDNA of *A. thaliana*^{WT} with combination of primers using touchdown PCR method. Putative *API5* gene have trans activation domain which is one of characteristic of antiapoptosis gene.

Suggestion

 Further gene isolation and characterization need to be done to get a whole resistance gene and its protein function.

References

- Dimyati, A., Djatnika, C.H., Nasir, N., dan A. Hasyim. 2001. current research activities on banana diseases and pests in Indonesia. *Advancing banana and plantain R & D in Asia and the Pacific.* **Vol :10** 110-122
- Li, W., Mehdi, K., Martin, B.D. 2010. Transgenic expression of an insect inhibitor of apoptosis gene, SfIAP, confers abiotic and biotic stress tolerance and delays tomato fruit ripening. *Physiological and Molecular Plant Pathology*. **Vol.74** (2010) 363-375
- Li, X., Gao, X., Yi, W., Li, D., Yidan, O., Guoxing, C., Xianghua, L., Qifa, Z., Changyin, W. 2011. Rice Apoptosis Inhibitor5 Coupled with two DEAD-Box Adenosine 5'-Triphospahet-Dependet RNA Helicases Regulates Tapetum Degeneration. *The Plant Cell*, **Vol. 23**: 1416–1434
- Paul, J-Y., Becker, D.K., Dickman, M.B., Harding, R.M., Khanna, H.K., Dale, J. 2011. Apoptoss-related genes confer resistance to Fusarium wilt in transgenic 'Lady Finger' bananas. *Plant Biotechnology Journal*, p 1-8.
- Subandiyah, S. 2011. Huanglongbing and Banana Wilt in Indonesia. Derek Tribe Award Address 2011
- FAOSTAT. 2012. United Nations Conference on Trade and Development, Banana Production. (online). Diakses dari : http://www.unctad.info/en/Infocomm/Agricultural Products/Banana/Market/. Tanggal 31 Agustus 2012
- Vezina, A. 2012. Fusarium wilt. (online). Diaskses dari : http://www.promusa.org/tiki-index.php?page=Fusarium+wilt. Tanggal 31 Agustus 2012

Acknowledgment

ASAHI GLASS FOUNDATION
LPPM ITB
SITH ITB

THANK YOU