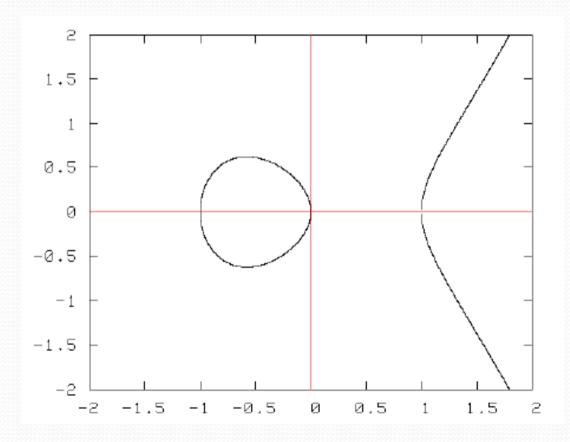
Accelerating Parallelized Pollard Rho to Identify Weak Class Elliptic Curves

Intan Muchtadi, Budi Rahardjo Marisa Paryasto, Tomy Ardiansyah, Sa'aadah Sajjana Carita

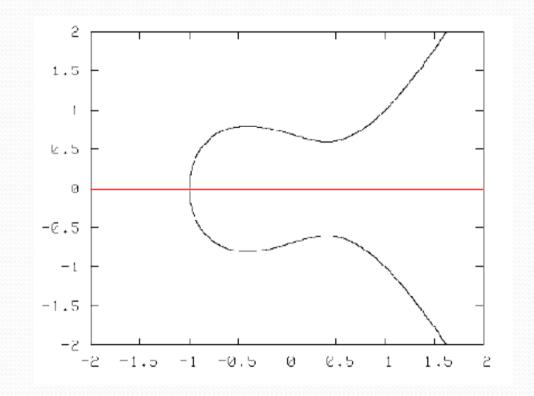
Faculty of Maths and Natural Sciences School of Electrical Engineering and Infomatics Institut Teknologi Bandung (ITB), Indonesia

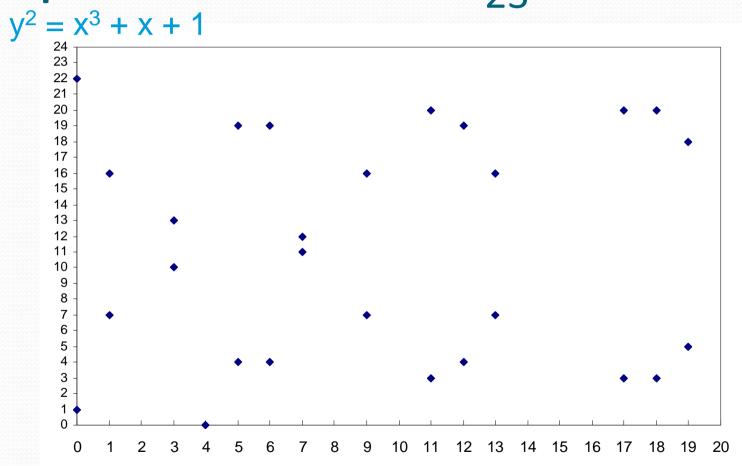
MOTIVATION

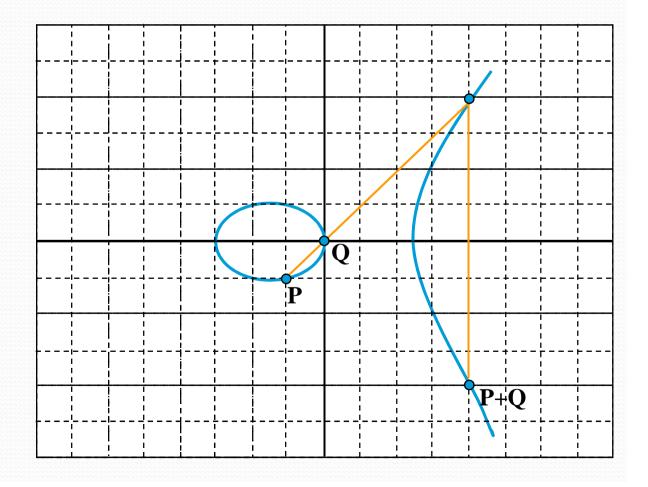
Devices with limited sources are easy to get wired /attacked


We need cryptography implementation on these kinds of devices

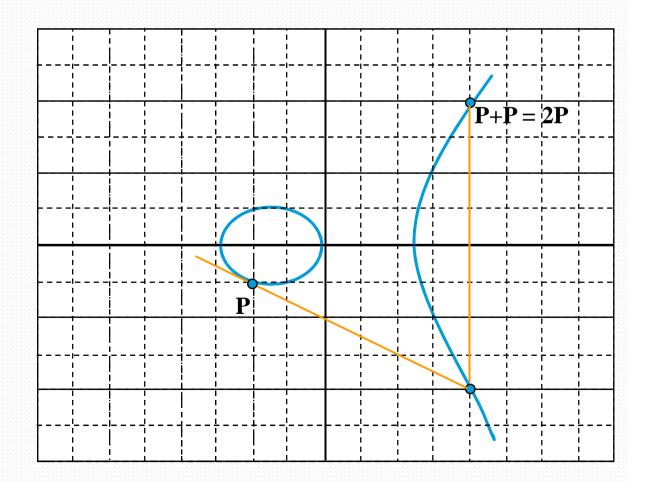
ECC is one of the solution, but ECC needs big computation


Elliptic curve

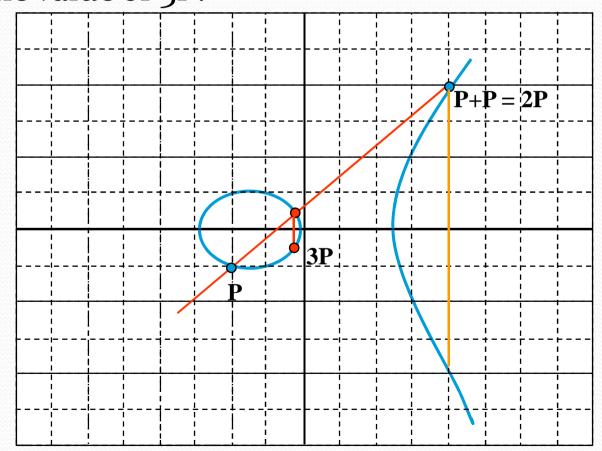



$y^2 = x^3 - \frac{1}{2}x + \frac{1}{2}$

Elliptic curve over F₂₃


Elliptic Curve Addition

Multiples in Elliptic Curves 1


- The interest in Elliptic Curve Addition is the process of adding a point to itself.
 - That is given a point P find the point P+P or 2P.
 - This is done by drawing a line tangent to P and reflecting the point at which it intercepts the curve
 - P can be added to itself k times resulting in a point W = kP.

Multiples in Elliptic Curves 1

Multiples in Elliptic Curves 2

• Finding the value of 3P:

Elliptic Curve Encryption

- INPUT: Prime p, elliptic curve E, point P of order n, private key d∈ [1,n-1], plaintext m
- OUTPUT: Cipher text (C1,C2)
- **1**. Compute Q=dP
- 2. Represent the message m as the point M in E(Fp)
- 3. Select $k \in [1, n-1]$
- **4.** Compute $C_1 = kP$
- 5. Compute $C_2 = M + kQ$
- 6. Return (C1,C2)

Elliptic Curve Decryption

- INPUT : prime p, elliptic curve E, point P of order n, private key d, ciphertext (C1,C2)
- OUTPUT: Plaintext m
- **1**. Compute M = C2-dC1 and extract m from M
- 2. Return (m).

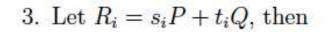
 $(M = C_2 - dC_1 = M + kQ - dkP = M + kdP - dkP)$

Elliptic Curve Security

 The security of the Elliptic Curve algorithm is based on the fact that it is very difficult (as difficult as factoring) to solve the Elliptic Curve Discrete Logarithm Problem:

Given two points P and Q where Q = kP, find the value of k

POLLARD RHO


Let $G = E(\mathbb{F})$, with |P| = M, and P and Q such that Q = [k]P in G. We aims to find k.

The Algorithm

- 1. By using a hash function, we divide G into 3 sets, S_1, S_2, S_3 with almost equal number of elements, but $\mathcal{O} \notin S_2$.
- 2. Define an iteration function f:

$$R_{i+1} = f(R_i) = \begin{cases} P + R_i, R_i \in S_1 \\ 2R_i, & R_i \in S_2 \\ Q + R_i, R_i \in S_3 \end{cases}$$
(1)

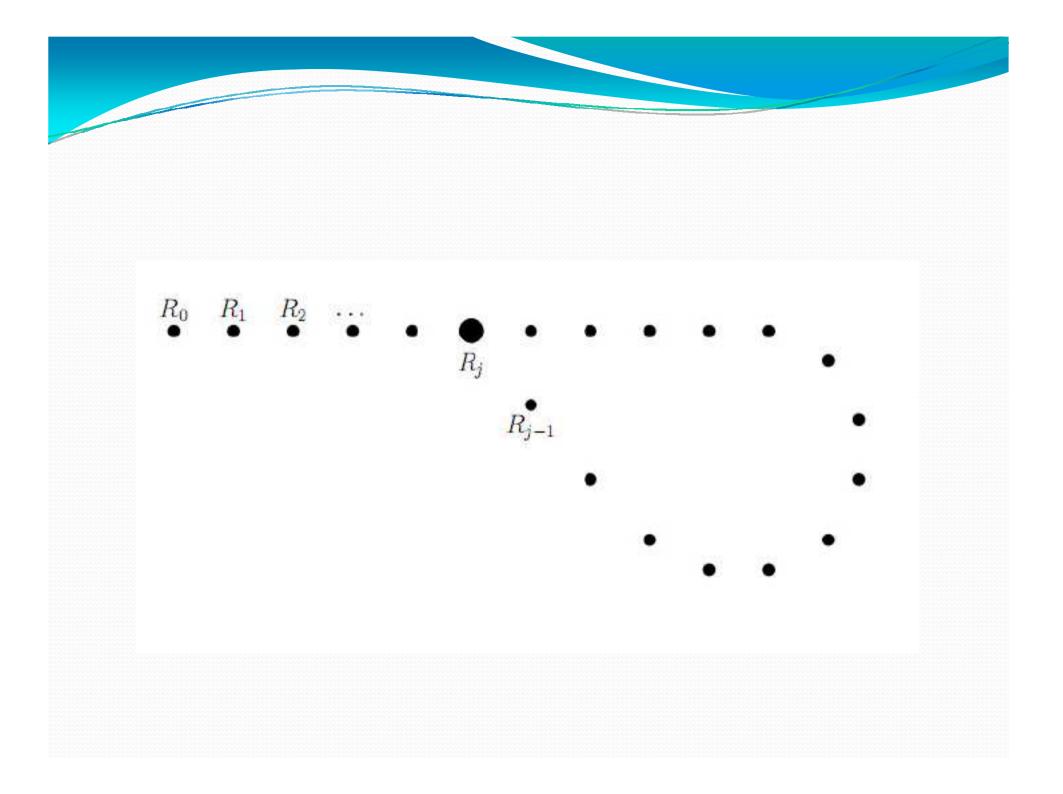
Since $R_{i+1} = 2R_i$ if $R_i \in S_2$, then if O is in S_2 , in some time $R_i = O$ and the values of the iteration functions will all be O. That is why we make the assumption of $O \notin S_2$.

and

$$t_{i+1} = \begin{cases} t_i & , R_i \in S_1 \\ 2t_i \mod m & , R_i \in S_2 \\ t_i + 1 & , R_i \in S_3 \end{cases}$$
(3)

4. Beginning with $R_0 = P, s_0 = 1, t_0 = 0$ we generate R_i until we find $R_j = R_l$ with $j \neq l$. When we reach that equality, we will get

 $s_{i+1} = \begin{cases} s_i + 1 & , R_i \in S_1 \\ 2s_i \mod m & , R_i \in S_2 \end{cases}$

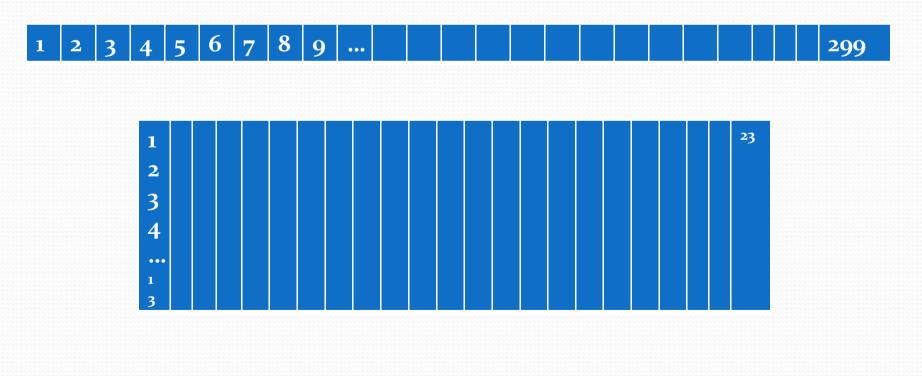

$$R_j = s_j P + t_j Q \text{ and } R_l = s_l P + t_l Q \tag{4}$$

And hence k is

$$k = \frac{s_l - s_j}{t_j - t_l} \mod m \tag{5}$$

(2)

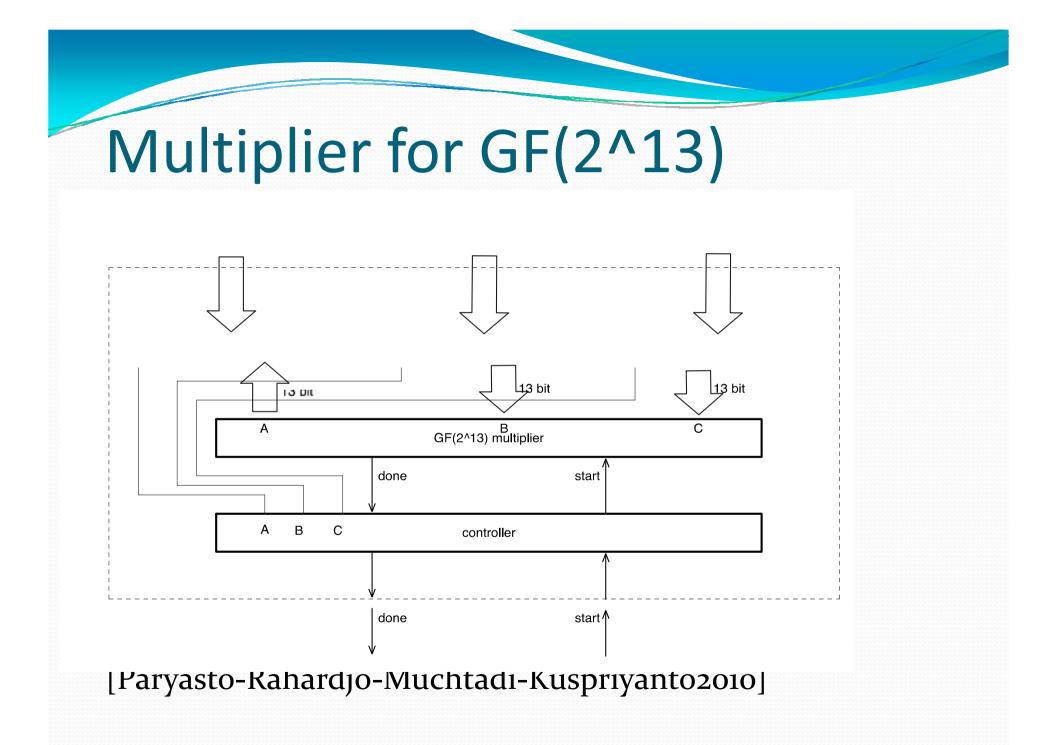
This algorithm can solve the ECDLP in $\mathcal{O}\sqrt{m}$ operation[10].(By the birthday paradox, the expected number of iterations for ordinary Pollard Rho is $\sqrt{\frac{\pi m}{2}}$)[1].

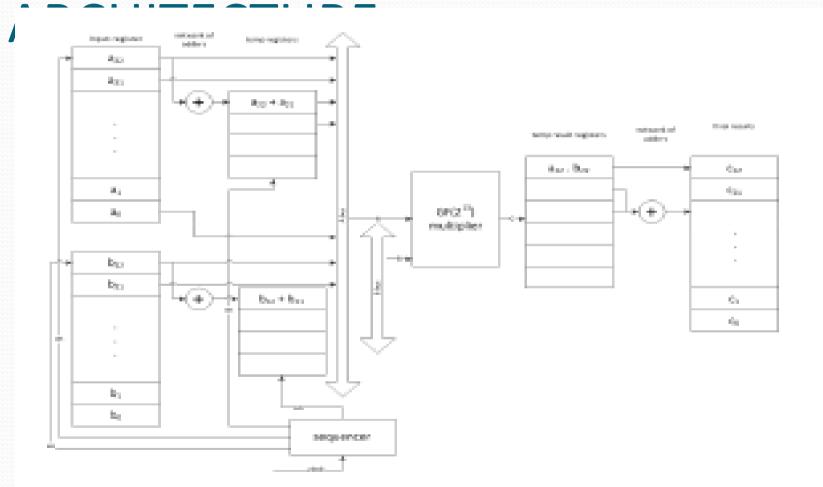


Finite Field

- Operations over the real numbers are slow and inaccurate due to round-off error
- Need to be faster and accurate
- Accurate and efficient :
 - Prime field GF(p)
 - Binary field GF(2^m)
 - Composite Field GF((2^m)ⁿ)

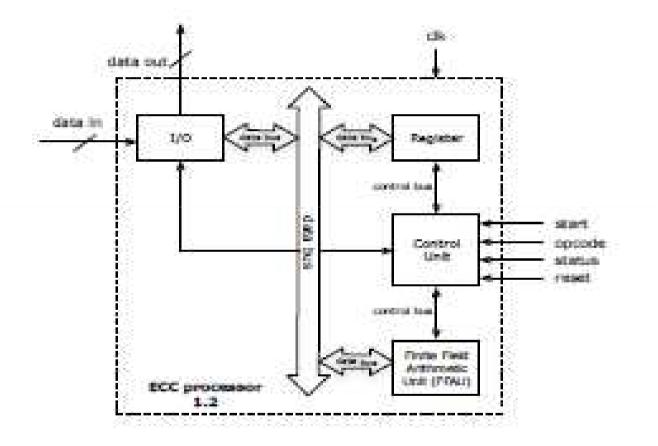
COMPOSITE FIELD


Using composite field, we may divide the computation into subfields from GF(2^k) into GF((2ⁿ)^m) where k = nm.


MULTIPLIER

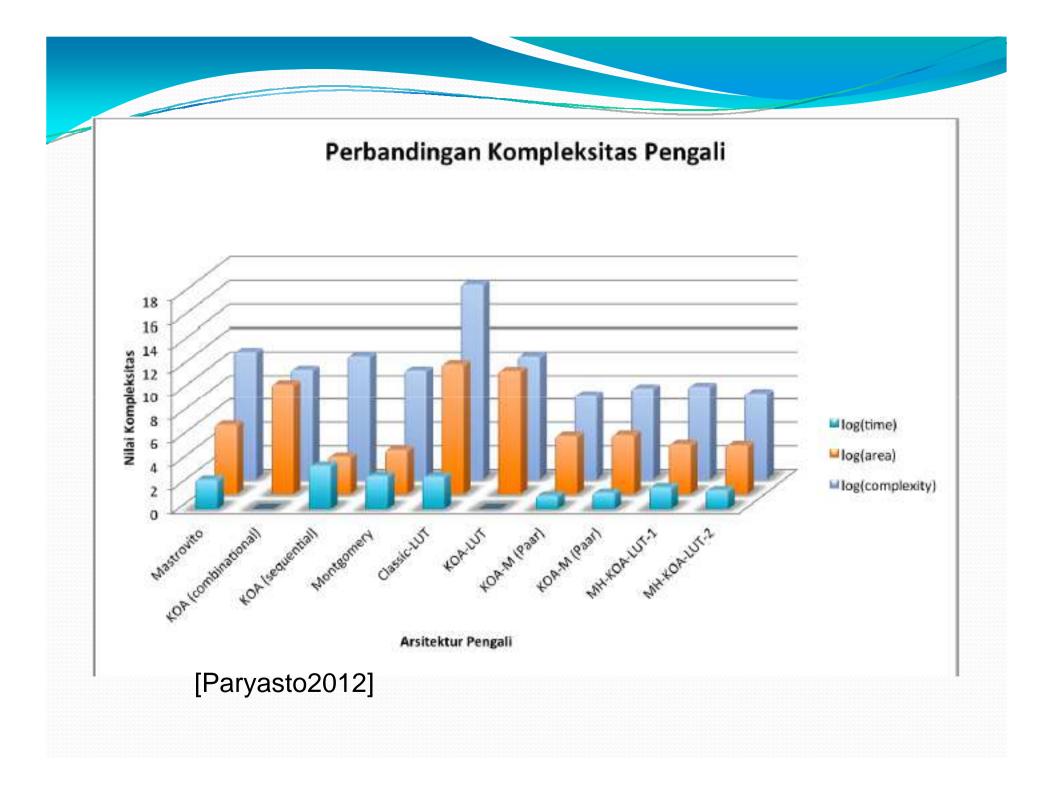
• MULTIPLIER :

- Create/improve algorithms
- Design implementation
- LUT is used for multiplication in ground field GF(2^13) and Karatsuba Offman Algorithm for the extension field multiplication GF(2^13)^23



MULTIPLIER GENERAL

[Paryasto-Rahardjo-Yuliawan-Muchtadi-Kuspriyanto2012]


ECC ARCHITECTURE WITH COMPOSITE FIELD

[Paryasto-Rahardjo-Muchtadi-Kuspriyanto2011]

	i fixed								
- je	Config	n	m	Area	Time	Complexity	log(time)	log(area)	log(complexity)
1	Mastrovito	29	9	805058	299	71972945558	2.4756712	5.9058269	10.85716928
2	KOA (combinational)	29	99	2243215876	1	2243215876	0	9.3508711	9.35087107
3	KOA (sequential)	29	19	1512	4608	32105299968	3.6635125	3.1795518	10.50657673
_4	Montgomery	29	19	5385	598	1925697540	2.7767012	3.7311857	9.284588076
5	Classic-LUT	13	23	1.1538E+11	529	3.22872E+16	2.7234557	11.062119	16.50903036
6	KOA-LUT	13	23	3.1407E+10	1	31407035559	0	10.497027	10.49702699
7	KOA-M (Paar)	13	23	87351	13	14762319	1.1139434	4.9412679	7.169154580
8	KOA-M (Paar)	23	13	105774	23	55954446	1.3617278	5.0243789	7.747834
9	MH-KOA-LUT-1	13	23	21707	69	103347027	1.8388491	4.3365998	8.014297988
10	MH-KOA-LUT-2	23	13	305172	39	464166612	1.5910646	5.4845447	8.66667389
	lfixed								
- 3	Config	n	m	Area	Time	Complexity	log(time)	log(area)	log(complexity)
1	Mastrovito	29	9	805058	299	71972945558	2.4756712	5.9058269	10.8571692
2	KOA (combinational)	29	9	2243215876	1	2243215876	0	9.3508711	9.3508710
З	KOA (sequential)	29	99	1512	4608	32105299968	3.6635125	3.1795518	10.5065767
4	Montgomery	29	19	5385	598	1925697540	2.7767012	3.7311857	9.28458807
5	Classic-LUT	13	23	1.1538E+11	529	3.22872E+16	2.7234557	11.062119	16.5090303
6	KOA-LUT	13	23	3.1407E+10	1	31407035559	0	10.497027	10.4970269
7	KOA-M (Paar)	13	23	87351	13	14762319	1.1139434	4.9412679	7.16915458
8	KOA-M (Paar)	23	13	105774	23	55954446	1.3617278	5.0243789	7.747834
9	MH-KOA-LUT-1	13	23	25884	69	123233724	1.8388491	4.4130314	8.09072957
1.00	MH-KOA-LUT-2	23	13	19779	39	30083859	1.5910646	4.2962043	7.47833354

[Paryasto2012]

Result 1 [Muchtadi2012]

 Speed up the Pollard Rho algorithm for elliptic curves over composite fields, by using the multiplier that combines the LUT and KOA proposed in [Paryasto2012]

Elliptic Curves over GF(2ⁿ)

Elliptic curve over $GF(2^n)$ is defined with Weierstrass equation, which after transformed by admissible change of variables, can be written as

$$E(GF(2^n)) = \{(x,y) \in GF(2^n)^2 : y^2 + xy = x^3 + ax^2 + b\} \cup \{O\},\$$

• where *O* is the projective closure of the equation .

Modified Pollard Rho

To speed up Pollard Rho, the iterating function f is defined on the equivalence class rather than just one point in $\langle P \rangle$.

The expected number of iterations for the modified Pollard Rho algorithm is $\sqrt{\frac{\pi m}{\pi}}$

Negation Map

If P = (x, y), we have -P = (x, x + y). The negation map $\psi(P) = -P$ has order 2, thus the number of iterations is expected to be

 $\sqrt{\pi m}$

This map is applicable to all elliptic curve.

Frobenius Map

The Frobenius map can be used only for Koblitz curves. A Koblitz curve E_a (where $a \in \{0,1\}$) is an elliptic curve defined over $GF(2^n)$:

 $E_a: y^2 + xy = x^3 + ax^2 + 1.$ The Frobenius map $\tau: E_m(GF(2^m)) \to E_m(GF(2^m))$ is defined by $\tau(O) = O$ and $\tau(x,y) = (x^2, y^2).$

Pollard Rho algorithm using equivalence classes under the Frobenius map has an expected number of iterations

V 299

V 291

1779R

as the order of the map is n.

Furthermore, for Koblitz curves, the Pollard Rho's algorithm can exploit both the Frobenius and negation map to achieve an expected running time of

Experimental Results1 [Muchtadi-Ardiansyah-Carita2013a]

Let $K = GF(2^7)$. E=Elliptic Curve defined by $y^2 + x^*y = x^3 + x^2 + 1$ Cardinality of E=142 Let P=R₀=(3,85) on E. The order of P is 71. We choose Q=50P

By using SAGE we compute R_i, as presented below:

i	Ri	$R_i = s_i P + t_i Q$	-R _i
0	(3,85)	1P+0Q	(3,86)
1	(19,29)	1P+1Q	(19,15)
2	(99,5)	2P+1Q	(99,102)
3	(65,119)	3P+1Q	(65,54)
4	(5,119)	3P+2Q	(5,114)
5	(49,23)	3P+3Q	(49,38)
6	(75,126)	4P+3Q	(75,53)
7	(55,56)	4P+4Q	(55,15)
8	(65,119)	8P+8Q	(65,54)

We need 8 iterations to get $R_3=R_8$. We get 3P + 1Q = 8P + 8Q -5P = 7Q 66P = 7kP $k = (66/7) \mod 71 = 50$

Computation of Equivalence classes

i		$\psi^{*}(R_{1})$
1	$(R_1)^2$	(3,86)
2	$(R_1)^4$	(5,114)
3	(R ₁) ⁴ (R ₁) ⁸	(17,122)
4	$(R_1)^{16}$	(7,58)
5	$(R_1)^{32}$	(21,90)
6	(R ₁) ⁶⁴	(23,96)
i .		$\psi^{l}(R_{2})$
1	$(R_2)^2$	(125,17)
2	$(R_2)^2$ $(R_2)^4$	(47,7)
3	(R ₂) ⁸	(77,21)
4	(R ₂) ¹⁶	(49,23)
5	(R ₂) ³²	(31,19)
6	(R ₂) ⁶⁴	(83,3)

Equivalence class (contd)

1	(R ₃) ²	(97,107)
2	(R3)4	(121,61)
3	(R ₃) ⁸	(63,79)
4 :	(R ₃) ¹⁶	(75,53)
5	(R ₃) ³²	(37,15)
6	(R ₃) ⁶⁴	(9,85)

i		$\psi^i(R_{\eta})$
1	(R ₄) ²	(17,107)
2	(R ₄) ⁴	(7,61)
3	(R ₄) ⁸	(21,79)
4	(R ₄) ¹⁶	(23,53)
5	(R ₄) ³²	(19,15)
6	(R ₄) ⁶⁴	(3,85)

Result with Frobenius

We can see that $\psi^{6}(R_{\phi}) = R_{0} = P$. Therefore $\psi^{6}(3P + 2Q) = P$. Since $\lambda = 103$, $3\psi^{6}(P) + 2\psi^{6}(Q) = P$. $3\lambda^{6}P + 2\lambda^{6}kP = P$. Since $\lambda = 103$, we get $3(103)^{6} + 2(103)^{6}k = 1$, therefore $k = ((1-3(103)^{6})/2(103)^{6}) \mod 71 = 50$.

Therefore, in this case, by using Frobenius map we just need 4 iterations to find two collision points. Note that we also need 6 times 4 squarings.

Result with Frobenius-Negation

Notice that -P=(3,86), hence $\psi(R_1) = (R_1)^2 = -P$. $\psi(P+Q) = -P$ 103P + 103kP = -P $k = ((-1-103)/103) \mod 71 = 50.$

Therefore by Frobenius-Negation map we just need **one** iteration to get collision points.

Comparison

Method	By experiment	By formule	
	#of iterations	# of iterations	
Ordinary	8	10.55~11	
Negation	8	7,46~8	
Frobenius	4	3,99~4	
Frob-Neg	1	2,82~3	

Experimental Result 3, using Random Walk [Muchtadi-Ardiansyah-Carita2013c]

i	X(i)[0]	X(i)[1]	sji	t_i	
	0	3	85	1	0
	1	17	107	1	2
	2	95	14	1	6
	3	99	102	3	6
	4	63	112	3	9
	5	69	50	3	13
	6	99	102	8	13

i	psi^i	X(1)[0]	X(1	[1]
	1 [X(1)]^2		7	61
	2 [X(1)]^4		21	79
	3 [X(1)]^8		23	53
	4 [X(1)]^16		19	15
	5 [X(1)]^32		3	85
	6 [X(1)]^64		5	119

Comparison

Method	By experiment	By formule
Ordinary	8	11
Negation	8	8
Frobenius	4	4
Frob-neg	1	3
Random Walk	6	11
Frob-Random Walk	1	4

Random Walk with new point

Pollard Rho biasa						
i	X(i)[0]	X(i)[1]	s_i	t_i		
0	5	114	1	0		
1	65	119	1	1		
2	11	94	1	2		
3	67	41	1	3		
4	113	107	2	3		
5	97	107	2	4		
6	127	61	2	5		
7	75	126	4	10		
8	23	34	4	11		
9	127	66	5	11		
10	75	53	10	22		
11	51	84	20	44		
12	21	90	40	17		
13	7	61	40	18		
14	31	12	9	36		
15	37	15	10	36		
16	67	41	11	36		

_	Adding Walks						
	R(i)[0]	R(i)[1]	s_i	t_i			
0	5	114	1	0			
1	51	103	1	4			
2	9	85	1	7			
m	21	90	1	9			
4	19	28	1	11			
5	23	34	4	11			
6	3	85	7	11			
7	37	42	7	13			
8	121	68	11	13			
9	57	13	22	26			
10	113	26	24	26			
11	31	19	27	26			
12	11	85	29	26			
13	5	119	29	28			
14	125	17	29	33			
15	93	53	31	33			
16	19	15	36	33			
17	63	112	38	33			
18	75	126	38	37			
19	49	23	38	42			
20	65	54	40	42			
21	0	1	45	42			
22	5	114	46	42			

i	psi^i	X(1)[0]	X(1)[1]
1	[X(1)]^2	97	107
2	[X(1)]^4	121	61
3	[X(1)]^8	63	79
4	[X(1)]^16	75	53
- 5	[X(1)]^32	37	15
6	[X(1)]^64	9	85

psi^i	X(2)[0]	X(2)[1]
[X(2)]^2	69	50
[X(2)]^4	113	26
[X(2)]^8	127	66
[X(2)]^16	43	100
[X(2)]^32	93	104
[X(2)]^64	55	56

i	psi^i	X(3)[0]	X(3)[1]
1	[X(3)]^2	101	89
2	[X(3)]^4	105	39
3	[X(3)]^8	57	13
4	[X(3)]^16	95	81
5	[X(3)]^32	51	103
6	[X(3)]^64	27	109

i		psi^i	X(4)[0]	X(4)[1]
	1	[X(4)]^2	127	61
	2	[X(4)]^4	43	79
	3	[X(4)]^8	93	53
1	4	[X(4)]^16	55	15
	5	[X(4)]^32	11	85
	6	[X(4)]^64	69	119

psi^i	X(5)[0]	X(5)[1]
[X(5)]^2	121	- 61
[X(5)]^4	63	79
[X(5)]^8	75	53
[X(5)]^16	37	15
[X(5)]^32	9	85
[X(5)]^64	65	119

Comparison

Method	By experiment	By formule
Ordinary	16	11
Negation	9	8
Frobenius Random Walk	5	4
Frob-neg Random Walk	4	3
Random Walk	22	11

Speeding the Squaring using Normal Basis

- A polynomial basis in *GF*(2ⁿ) is a basis of the form {1,α, α²,..., αⁿ⁻¹}
- A normal basis in $GF(2^n)$ is a basis of the form $\{\alpha, \alpha^2, ..., \alpha^{2^n-1}\}$
- In normal basis squaring is just a cyclic shift of the coordinates.

For example

- W = 10110101
- $W^{\wedge}2 = 11011010$
- $W^{4} = 01101101$

				ъ							C D D		
		Ta		-	\mathbf{prese}			t NB			of PE		
	1	β	β^2	β^3	β^4	β^5	β^6	β^7	β^8	β^9	β^{10}	β^{11}	β^{12}
β	0	1	0	0	0	0	0	0	0	0	0	0	0
β^2	0	0	1	0	0	0	0	0	0	0	0	0	0
β^{2^2}	0	0	0	0	1	0	0	0	0	0	0	0	0
β^{2^3}	0	0	0	0	0	0	0	0	1	0	0	0	0
β^{2^4}	0	0	0	1	1	0	1	1	0	0	0	0	0
$\beta^{2^{\mathrm{b}}}$	0	1	1	0	1	1	1	0	1	0	0	0	1
β^{2^6}	0	1	1	0	1	0	0	1	1	0	1	1	0
β^{2^7}	1	0	0	0	0	1	1	0	0	1	0	1	1
β^{2^8}	1	0	0	0	0	1	0	0	1	0	0	1	1
β^{2^9}	0	0	0	1	1	0	0	1	0	1	0	1	0
$\beta^{2^{10}}$	1	0	1	1	0	0	0	0	0	0	1	0	1
$\beta^{2^{11}}$	1	1	0	1	0	0	0	1	1	0	1	0	1
$\beta^{2^{12}}$	1	0	0	0	1	1	1	0	1	0	1	0	1

Let A be the 13×13 matrix whose entries are binary numbers in the above table. If

 $x = \begin{pmatrix} B[0] \\ B[1] \\ \vdots \\ B[12] \end{pmatrix}$ is a representation of an element of $GF(2^{13})$ in NB, then $x' = A^T x$

is its representation in PB. Note that A^T is invertible since elements of NB are linearly independent. Therefore, let $x' = \begin{pmatrix} B[0]' \\ B[1]' \\ \vdots \\ B[12]' \end{pmatrix}$ be the representation of an element of $GF(2^{13})$ in PB, and let $(A^T)^{-1}$ be the inverse of A^T , we have $x = (A^T)^{-1}x'$, none other than its representation in PB. Thus, $(A^T)^{-1}$ is the transition matrix from PB to NB.

Experimental Result 2 [Muchtadi-Ardiansyah-Carita2013b]

Let $K = GF(2^{13})$, $E = \text{Koblitz Curve defined by } y^2 + xy = x^3 + x^2 + 1$ Cardinality of E = 8374. Let P = X(0) = (9, 2951) on E. The order of P is 4187.

We choose Q = 100P

i	X(i)[0]	X(i)[1]	P	Q
0	9	2951	1	0
1	2922	1830	2	0
2	3569	3925	3	0
3	1355	797	6	0
4	2784	7113	7	0
5	1513	7334	7	1
6	1798	2968	7	2
7	2285	902	14	4
8	4858	6501	15	4
9	5798	4122	15	5
10	2107	6345	30	10
11	2179	6815	30	11
12	7980	1542	30	12
13	4119	6523	31	12
14	59	6619	31	13
15	311	1714	31	14
16	7421	818	32	14
17	1101	7584	33	14
18	1269	4920	33	15
19	283	543	66	30
20	6994	6012	67	30
21	592	8158	67	31
22	8084	2721	67	32
23	6024	360	68	32
24	3670	3524	69	32
25	2317	6238	138	64
26	4417	7507	138	65
27	4465	4094	138	66
28	8030	5958	276	132
		3330		
29	6828	6345	276	133
29 30				
	6828	6345	276	133
30	6828 3291	6345 7649	276 276	133 134
30 31	6828 3291 1608	6345 7649 1066	276 276 276	133 134 135
30 31 32	6828 3291 1608 2149	6345 7649 1066 8026	276 276 276 277	133 134 135 135
30 31 32 33	6828 3291 1608 2149 7800	6345 7649 1066 8026 3802	276 276 276 277 277 277	133 134 135 135 136
30 31 32 33 34	6828 3291 1608 2149 7800 5533	6345 7649 1066 8026 3802 6054	276 276 276 277 277 277 554	133 134 135 135 136 272
30 31 32 33 34 35	6828 3291 1608 2149 7800 5533 1832	6345 7649 1066 8026 3802 6054 4866	276 276 277 277 277 554 554	133 134 135 135 136 272 273
30 31 32 33 34 35 36 37 38	6828 3291 1608 2149 7800 5533 1832 5058	6345 7649 1066 8026 3802 6054 4866 3676	276 276 277 277 277 554 554 1108	133 134 135 135 272 273 546
30 31 32 33 34 35 36 37	6828 3291 1608 2149 7800 5533 1832 5058 4509 1269 1102	6345 7649 1066 8026 3802 6054 4866 3676 7711	276 276 277 277 554 554 1108 2216 2216 2216	133 134 135 136 272 273 546 1092 1093 1094
30 31 32 33 34 35 36 37 38 39 40	6828 3291 1608 2149 7800 5533 1832 5058 4509 1269 1102 5587	6345 7649 1066 8026 3802 6054 4866 3676 7711 6093	276 276 277 277 554 554 1108 2216 2216 2216 2216 2216	133 134 135 135 136 272 273 546 1092 1093 1094
30 31 32 33 34 35 36 37 38 39 40 41	6828 3291 1608 2149 7800 5533 1832 5058 4509 1269 1102	6345 7649 1066 8026 3802 6054 4866 3676 7711 6093 6637 7884 3832	276 276 277 277 554 554 1108 2216 2216 2216 2216 2216	133 134 135 136 272 273 546 1092 1093 1094 1095
30 31 32 33 34 35 36 37 38 37 38 39 40 41 42	6828 3291 1608 2149 7800 5533 1832 5058 4509 1269 1102 5587 5543 6080	6345 7649 1066 8026 3802 6054 4866 3676 7711 6093 6637 7884 3832 2517	276 276 277 277 554 554 1108 2216 2216 2216 2216 2216 2216 2216 221	133 134 135 135 136 272 273 546 1092 1093 1094 1095 1096 2192
30 31 32 33 34 35 36 37 38 39 40 41 42 43	6828 3291 1608 2149 7800 5533 1832 5058 4509 1269 1102 5587 5543 6080 7724	6345 7649 1066 8026 3802 6054 4866 3676 7711 6093 6637 7884 3832 2517 6879	276 276 277 277 554 554 1108 2216 2216 2216 2216 2216 2216 2216 221	133 134 135 135 136 272 273 546 1092 1093 1094 1095 1096 2192 2192
30 31 32 33 34 35 36 37 38 38 39 40 41 42 43 44	6828 3291 1608 2149 7800 5533 1832 5058 4509 1269 1102 5587 5543 6080 7724 5832	6345 7649 1066 8026 3802 6054 4866 3676 7711 6093 6637 7884 3832 2517 6879 1606	276 276 277 277 554 554 1108 2216 2216 2216 2216 2216 2216 2216 221	133 134 135 135 136 272 273 546 1092 1093 1094 1095 1096 2192 2192 2193
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	6828 3291 1608 2149 7800 5533 1832 5058 4509 1269 1102 5587 5543 6080 7724	6345 7649 1066 8026 3802 6054 4866 3676 7711 6093 6637 7884 3832 2517 6879 1606 7570	276 276 277 277 554 554 1108 2216 2216 2216 2216 2216 2216 2216 221	133 134 135 135 136 272 273 546 1092 1093 1094 1095 1096 2192 2193 2193
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	6828 3291 1608 2149 7800 5533 1832 5058 4509 1269 1102 5587 5543 6080 7724 5832 2295 3073	6345 7649 1066 8026 3802 6054 4866 3676 7711 6093 6637 7884 3832 2517 6879 1606 7570 586	276 276 277 277 554 554 554 2216 2216 2216 2216 2216 2216 2216 221	133 134 135 135 136 272 273 546 1092 1093 1094 1095 1096 2192 2193 2193 2194
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	6828 3291 1608 2149 7800 5533 1832 5058 4509 1269 1102 5587 5543 6080 7724 5832 2295 3073 8018	6345 7649 1066 8026 3802 6054 4866 3676 7711 6093 6637 7884 3832 2517 6879 1606 7570 586 2282	276 276 277 277 554 554 554 2216 2216 2216 2216 2216 2216 2216 221	133 134 135 135 136 272 273 546 1092 1093 1094 1095 1096 2192 2193 2193 2194
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	6828 3291 1608 2149 7800 5533 1832 5058 4509 1269 1102 5587 5543 6080 7724 5832 2295 3073 8018 2576	6345 7649 1066 8026 3802 6054 4866 3676 7711 6093 6637 7884 3832 2517 6879 1606 7570 586 2282 989	276 276 277 277 554 554 554 2216 2216 2216 2216 2216 2216 2216 221	133 134 135 135 136 272 273 546 1092 1093 1094 1095 1096 2192 2193 2193 2194 2194
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	6828 3291 1608 2149 7800 5533 1832 5058 4509 1269 1102 5587 5543 6080 7724 5832 2295 3073 8018 2576 6511	6345 7649 1066 8026 3802 6054 4866 3676 7711 6093 6637 7884 3832 2517 6879 1606 7570 586 2282 989 5297	276 276 277 277 554 554 554 2216 2216 2216 2216 2216 2216 2216 221	133 134 135 135 136 272 273 546 1092 1093 1094 1095 1096 2192 2193 2194 2194 2194 2194
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	6828 3291 1608 2149 7800 5533 1832 5058 4509 1269 1102 5587 5543 6080 7724 5832 2295 3073 8018 2576 6511 1399	6345 7649 1066 8026 3802 6054 4866 3676 7711 6093 6637 7884 3832 2517 6879 1606 7570 586 2282 989 5297 2602	276 276 277 277 554 554 1108 2216 2216 2216 2216 2216 2216 2216 245 246 247 247 247 247 248 249 250 500	133 134 135 136 272 273 546 1092 1093 1094 1095 1096 2192 2193 2193 2194 2194 2194 2194 2194 2194 2194 2194 2194 2194 2194 2194 2194 2194 2194 2194 2194
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	6828 3291 1608 2149 7800 5533 1832 5058 4509 1269 1102 5587 5543 6080 7724 5832 2295 3073 8018 2576 6511 1399 2257	6345 7649 1066 8026 3802 6054 4866 3676 7711 6093 6637 7884 3832 2517 6879 1606 7570 586 2282 989 5297 2602 3635	276 276 277 277 554 554 1108 2216 2216 2216 2216 2216 2216 2216 245 246 247 247 247 247 247 247 248 249 250 500	133 134 135 135 136 272 273 546 1092 1093 1094 1095 1096 2192 2193 2193 2194 2194 2194 2194 2194 2194 2194 2191 2194 2191 2194 2194 2194 2194 2194 2194 2194 2194 2194 2194 201
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	6828 3291 1608 2149 7800 5533 1832 5058 4509 1269 1102 5587 5543 6080 7724 5832 2295 3073 8018 2576 6511 1399	6345 7649 1066 8026 3802 6054 4866 3676 7711 6093 6637 7884 3832 2517 6879 1606 7570 586 2282 989 5297 2602	276 276 277 277 554 554 1108 2216 2216 2216 2216 2216 2216 2216 245 246 247 247 247 247 248 249 250 500	133 134 135 136 272 273 546 1092 1093 1094 1095 1096 2192 2193 2193 2194 2194 2194 2194 2194 2194 2194 2194 2194 2194 2194 2194 2194 2194 2194 2194 2194
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	6828 3291 1608 2149 7800 5533 1832 5058 4509 1269 1102 5587 5543 6080 7724 5832 2295 3073 8018 2576 6511 1399 2257	6345 7649 1066 8026 3802 6054 4866 3676 7711 6093 6637 7884 3832 2517 6879 1606 7570 586 2282 989 5297 2602 3635	276 276 277 277 554 554 1108 2216 2216 2216 2216 2216 2216 2216 245 246 247 247 247 247 247 247 248 249 250 500	133 134 135 135 136 272 273 546 1092 1093 1094 1095 1096 2192 2193 2193 2194 2194 2194 2194 2194 2194 2194 2191 2194 2191 2194 2194 2194 2194 2194 2194 2194 2194 2194 2194 201

Т	i	X(i)[0]	X(i)[1]	Р	Q
+	55	7657	2837	4009	1608
-1	56	1704	1630	3831	3216
-1	57	5263	6968	3832	3216
-1	58	6744	2654	3832	3217
-	59	6405	7628	3833	3217
-	60	3161	3227	3833	3218
-	61	1750	867	3479	2249
-	62	3668	6778	3480	2249
-1	63	1421	3051	3480	2250
+	64	3365	3653	2773	313
+	65	5263	4023	1359	626
-					
-	66 67	4870 8130	7842 2175	2718 2718	1252 1253
-1	68		5243	2718	1253
-	68	7249 928	5243	1251	2506
-	70	928 139	7627	1251	2506
-	71	5008	7590	1251	2507
+	72	7663	3778	1251	2508
-}	73	1149	2737	2502	831
-	74	1215	5602	817	1662
-	75	429	2825	817	1663
-}	76	570	4564	1634	3326
-}	77	2628	131	3268	2465
-	78	6838	6647	3269	2465
+	79	1251	1604	3269	2465
+	80	7429	1136	3270	2466
+	81	6347	2571	3271	2466
-	82	3908	4526	3272	2466
-	83	5345	2060	2357	745
	84	670	4826	2358	745
1	85	7365	8155	529	1490
1	86	67	3068	529	1491
1	87	6283	4020	1058	2982
1	88	1996	7385	2116	1777
1	89	4702	3237	2116	1778
1	90	6407	5259	45	3556
1	91	8180	1984	90	2925
1	92	4555	358	91	2925
7	93	2604	1050	92	2925
Τ	94	5165	4273	93	2925
Τ	95	3070	7663	186	1663
Т	96	766	1866	186	1664
Τ	97	520	6623	187	1664
Ι	98	2594	5020	187	1665
Ι	99	53	3126	374	3330
1	100	6828	6345	748	2473
	-				

We need 100 iterations to get X(29) = X(100). We get

$$276P + 133Q = 748P + 2473Q$$
$$-2340Q = 472P$$
$$1847kP = 472P$$
$$k = (\frac{472}{1847}) \mod 4187$$
$$k = 100$$

We can see X(65) = (5263, 4023) and its negation is -X(65) = (5263, 6968). We get

$$-(3832P + 3216Q) = 1359P + 626Q$$
$$-3842Q = 13565P$$
$$345kP = 1004P$$
$$k = (\frac{1004}{345}) \mod 4187$$
$$k = 100.$$

The use of Frobenius, Negation and Normal Basis

The following is the computation of equivalence class under Frobenius map of $X(1), X(2), \dots, X(20)$. We change it first into normal basis representation then we perform the squaring as cyclic shift.

In the following table we write down the elements of $GF(2^{13})$ as decimal. For example, in polynomial basis $\beta^7 + \beta^6 + \beta^4 + \beta^3 = 0000011011000 = 216$ and by Table 3, $\beta^7 + \beta^6 + \beta^4 + \beta^3 = \beta^{2^4} = 000000010000$ in normal basis.

Table.5. Computation of equivalence

class of X(1)								
i	psi^i	(X1)^i[0]	(X1)^i[1]					
1	[X(1)]^2	487	2604					
2	[X(1)]^4	5371	4395					
3	[X(1)]^8	169	7367					
4	[X(1)]^16	1143	5090					
5	[X(1)]^32	6293	4048					
6	[X(1)]^64	3942	2325					
7	[X(1)]^128	3127	6098					
8	[X(1)]^256	7822	1872					
9	[X(1)]^512	195	7992					
10	[X(1)]^1024	4147	1337					
11	[X(1)]^2048	7519	2073					
12	[X(1)]^4096	4684	5978					

class of X(2)								
i	psi^i	(X2)^i[0]	(X2)^i[1]					
1	[X(2)]^2	3700	2354					
2	[X(2)]^4	3563	5063					
3	[X(2)]^8	3888	3009					
4	[X(2)]^16	7459	1428					
5	[X(2)]^32	1820	3198					
6	[X(2)]^64	3944	3791					
7	[X(2)]^128	3171	2200					
8	[X(2)]^256	3998	5997					
9	[X(2)]^512	6465	563					
10	[X(2)]^1024	7832	1637					
11	[X(2)]^2048	471	6897					
12	[X(2)]^4096	4603	6166					

Table.6. Computation of equivalence

class of X(3)								
i	psi^i	(X3)^i[0]	(X3)^i[1]					
1	[X(3)]^2	7453	745					
2	[X(3)]^4	584	5911					
3	[X(3)]^8	4896	6007					
4	[X(3)]^16	8162	887					
5	[X(3)]^32	5195	5805					
6	[X(3)]^64	1439	4829					
7	[X(3)]^128	3131	2653					
8	[X(3)]^256	7902	1066					
9	[X(3)]^512	4547	2500					
10	[X(3)]^1024	2225	1765					
11	[X(3)]^2048	4908	6855					
12	[X(3)]^4096	8114	7426					

Table.7. Computation of equivalence

Table.8. Computation of equivalence

class of X(4)

i	psi^i	(X4)^i[0]	(X4)^i[1]			
1	[X(4)]^2	333	7566			
2	[X(4)]^4	4233	891			
3	[X(4)]^8	6189	5885			
4	[X(4)]^16	2576	989			
5	[X(4)]^32	5243	4831			
6	[X(4)]^64	159	2649			
7	[X(4)]^128	355	1082			
8	[X(4)]^256	5341	2244			
9	[X(4)]^512	1213	1597			
10	[X(4)]^1024	2279	2993			
11	[X(4)]^2048	568	4244			
12	[X(4)]^4096	1568	6524			

Та	Table.9. Computation of equivalence				
	class	s of X(5)			
i	psi^i	(X5)^i[0]	(X5)^i[1]		
1	[X(5)]^2	6447	2019		
2	[X(5)]^4	2764	6667		
3	[X(5)]^8	1309	3428		
4	[X(5)]^16	3081	3923		
5	[X(5)]^32	7130	2342		
6	[X(5)]^64	7307	4823		
7	[X(5)]^128	946	2585		
8	[X(5)]^256	1674	5178		
9	[X(5)]^512	3730	4254		
10	[X(5)]^1024	6601	6456		
11	[X(5)]^2048	7918	3033		
12	[X(5)]^4096	5315	1236		

Table.10. Computation of equivalence

class of X(6)

i	psi^i	(X6)^i[0]	(X6)^i[1]
1	[X(6)]^2	3628	5333
2	[X(6)]^4	7339	1277
3	[X(6)]^8	1970	6375
4	[X(6)]^16	2826	6754
5	[X(6)]^32	5607	6437
6	[X(6)]^64	289	2696
7	[X(6)]^128	1241	5389
8	[X(6)]^256	7415	5459
9	[X(6)]^512	5858	1031
10	[X(6)]^1024	648	3477
11	[X(6)]^2048	790	6756
12	[X(6)]^4096	684	6449

Table.11. Computation of equivalence

		-		
	ass	of	×1	71
C (255	01	- 81	1

i	psi^i	(X7)^i[0]	(X7)^i[1]		
1	[X(7)]^2	636	922		
2	[X(7)]^4	5680	714		
3	[X(7)]^8	5050	4882		
4	[X(7)]^16	7824	6886		
5	[X(7)]^32	407	6403		
6	[X(7)]^64	507	3740		
7	[X(7)]^128	5547	6557		
8	[X(7)]^256	4465	4094		
9	[X(7)]^512	3459	3393		
10	[X(7)]^1024	7024	2882		
11	[X(7)]^2048	6393	1447		
12	[X(7)]^4096	6966	2427		

Table.12. Computation of equivalence					
	class	5 of X(8)			
i	psi^i	(X8)^i[0]	(X8)^i[1]		
1	[X(8)]^2	3656	6792		
2	[X(8)]^4	2235	3415		
3	[X(8)]^8	4968	2646		
4	[X(8)]^16	4002	1135		
5	[X(8)]^32	7185	6613		
6	[X(8)]^64	704	8126		
7	[X(8)]^128	4950	1307		
8	[X(8)]^256	2806	3101		
9	[X(8)]^512	89	6858		
10	[X(8)]^1024	4417	7507		
11	[X(8)]^2048	2179	4636		
12	[X(8)]^4096	5672	6762		

Tabl	e.13.	Computation	of	f equivalence
------	-------	-------------	----	---------------

class of X(9)						
i	psi^i	(X9)^i[0]	(X9)^i[1]			
1	[X(9)]^2	4760	6430			
2	[X(9)]^4	6732	4045			
3	[X(9)]^8	7537	2116			
4	[X(9)]^16	5656	1547			
5	[X(9)]^32	6138	3749			
6	[X(9)]^64	784	7388			
7	[X(9)]^128	696	4775			
8	[X(9)]^256	1558	7961			
9	[X(9)]^512	4084	312			
10	[X(9)]^1024	3333	1432			
11	[X(9)]^2048	6994	3118			
12	[X(9)]^4096	7421	8143			

Table.14. Computation of equivalence

class of X(10)

i	psi^i	(X10)^i[0]	(X10)^i[1]		
1	[X(10)]^2	4958	7734		
2	[X(10)]^4	2742	1461		
3	[X(10)]^8	4185	2175		
4	[X(10)]^16	2331	846		
5	[X(10)]^32	6022	5100		
6	[X(10)]^64	5696	3972		
7	[X(10)]^128	1722	6149		
8	[X(10)]^256	2962	3664		
9	[X(10)]^512	5265	2555		
10	[X(10)]^1024	5357	944		
11	[X(10)]^2048	445	1678		
12	[X(10)]^4096	1471	3714		

Та	Table.15. Computation of equivalence				
	class	of X(11)			
i	psi^i	(X11)^i[0]	(X11)^i[1]		
1	[X(11)]^2	5672	3138		
2	[X(11)]^4	4858	2975		
3	[X(11)]^8	3656	5312		
4	[X(11)]^16	2235	1516		
5	[X(11)]^32	4968	6462		
6	[X(11)]^64	4002	3021		
7	[X(11)]^128	7185	1476		
8	[X(11)]^256	704	7550		
9	[X(11)]^512	4950	5709		
10	[X(11)]^1024	2806	1771		
11	[X(11)]^2048	89	6803		

4417

3090

12 [X(11)]^4096

Table.16. Computation of equivalence

class of X(12)

i	psi^i	(X12)^i[0]	(X12)^i[1]
1	[X(12)]^2	1065	3828
2	[X(12)]^4	2497	3549
3	[X(12)]^8	1780	2596
4	[X(12)]^16	7110	4459
5	[X(12)]^32	7643	3271
6	[X(12)]^64	4714	3000
7	[X(12)]^128	3966	4309
8	[X(12)]^256	3447	2429
9	[X(12)]^512	3670	914
10	[X(12)]^1024	2543	650
11	[X(12)]^2048	672	786
12	[X(12)]^4096	1878	700

Table.17. Computation of equivalence

class of X(13)					
i	psi^i	(X13)^i[0]	(X13)^i[1]		
1	[X(13)]^2	6479	7132		
2	[X(13)]^4	7884	7327		
3	[X(13)]^8	4295	674		
4	[X(13)]^16	2169	1874		
5	[X(13)]^32	858	7996		
6	[X(13)]^64	4860	1321		
7	[X(13)]^128	3676	2329		
8	[X(13)]^256	2475	6018		
9	[X(13)]^512	4784	5712		
10	[X(13)]^1024	7692	1978		
11	[X(13)]^2048	241	2890		
12	[X(13)]^4096	5431	1511		

Table.18. Computation of equivalence

class of X(14)

class of X(14)				
i	psi^i	(X14)^i[0]	(X14)^i[1]	
1	[X(14)]^2	1349	8170	
2	[X(14)]^4	7497	5131	
3	[X(14)]^8	4952	5535	
4	[X(14)]^16	2722	5217	
5	[X(14)]^32	4425	475	
6	[X(14)]^64	2243	4523	
7	[X(14)]^128	1576	7409	
8	[X(14)]^256	2720	5878	
9	[X(14)]^512	4429	920	
10	[X(14)]^1024	2259	718	
11	[X(14)]^2048	1832	4866	
12	[X(14)]^4096	2680	7142	
8 9 10 11	[X(14)]^256 [X(14)]^512 [X(14)]^1024 [X(14)]^2048	2720 4429 2259 1832	5878 920 718 4866	

Table.19. Computation of equivalence class of X(15)

5)^i[0] (X15)^i[1]	(X15)^i[0]	psi^i	i
485 3026	1485	[X(15)]^2	1
487 1169	7487	[X(15)]^4	2
512 3255	1612	[X(15)]^8	3
856 7864	7856	[X(15)]^16	4
431 1495	1431	[X(15)]^32	5
195 7291	3195	[X(15)]^64	6
806 5764	3806	[X(15)]^128	7
457 5788	2457	[X(15)]^256	8
068 6108	6068	[X(15)]^512	9
932 1796	4932	[X(15)]^1024	10
3642	3058	[X(15)]^2048	11
45 7355	145	[X(15)]^4096	12
431 1495 195 7291 806 5764 457 5788 068 6108 932 1796 058 3642	1431 3195 3806 2457 6068 4932 3058	[X(15)]^16 [X(15)]^32 [X(15)]^64 [X(15)]^128 [X(15)]^256 [X(15)]^512 [X(15)]^1024 [X(15)]^2048	5 6 7 8 9 10 11

Table.20. Computation of equivalence

class of X(16)

i	psi^i	(X16)^i[0]	(X16)^i[1]	
1	[X(16)]^2	5798	1724	
2	[X(16)]^4	4760	2950	
3	[X(16)]^8	6732	5505	
4	[X(16)]^16	7537	5429	
5	[X(16)]^32	5656	4115	
6	[X(16)]^64	6138	6495	
7	[X(16)]^128	784	8140	
8	[X(16)]^256	696	4127	
9	[X(16)]^512	1558	6415	
10	[X(16)]^1024	4084	3788	
11	[X(16)]^2048	3333	2205	
12	[X(16)]^4096	6994	6012	

Table.21. Computation of equivalence
class of X(17)

i	psi^i	(X17)^i[0]	(X17)^i[1]		
1	[X(17)]^2	7633	1839		
2	[X(17)]^4	4654	2669		
3	[X(17)]^8	8046	298		
4	[X(17)]^16	5165	1180		
5	[X(17)]^32	4491	3302		
6	[X(17)]^64	6385	4025		
7	[X(17)]^128	7030	7508		
8	[X(17)]^256	6381	4617		
9	[X(17)]^512	6694	7035		
10	[X(17)]^1024	2357	6332		
11	[X(17)]^2048	5074	2855		
12	[X(17)]^4096	2768	4534		

Table.22. Computation of equivalence class of X(18)

i	psi^i	(X18)^i[0]	(X18)^i[1]	
1	[X(18)]^2	6311	7842	
2	[X(18)]^4	2658	1171	
3	[X(18)]^8	383	3251	
4	[X(18)]^16	5517	7848	
5	[X(18)]^32	5477	1239	
6	[X(18)]^64	275	7331	
7	[X(18)]^128	477	2034	
8	[X(18)]^256	4543	6922	
9	[X(18)]^512	7649	3517	
10	[X(18)]^1024	5934	7716	
11	[X(18)]^2048	4662	1201	
12	[X(18)]^4096	7726	2231	

Table.23. Computation of equivalence

class of X(19)

i	psi^i	(X19)^i[0]	(X19)^i[1]
1	[X(19)]^2	413	565
2	[X(19)]^4	447	1649
3	[X(19)]^8	1467	7137
4	[X(19)]^16	2091	6606
5	[X(19)]^32	4702	7931
6	[X(19)]^64	2670	5586
7	[X(19)]^128	303	1072
8	[X(19)]^256	1165	2176
9	[X(19)]^512	3559	5677
10	[X(19)]^1024	3936	4843
11	[X(19)]^2048	3107	3913
12	[X(19)]^4096	8094	2146

i dutant				
class of X(20)				
i	psi^i	(X20)^i[0]	(X20)^i[1]	
1	[X(20)]^2	7421	818	
2	[X(20)]^4	5798	1724	
3	[X(20)]^8	4760	2950	
4	[X(20)]^16	6732	5505	
5	[X(20)]^32	7537	5429	
6	[X(20)]^64	5656	4115	
7	[X(20)]^128	6138	6495	
8	[X(20)]^256	784	8140	
9	[X(20)]^512	696	4127	
10	[X(20)]^1024	1558	6415	
11	[X(20)]^2048	4084	3788	
12	[X(20)]^4096	3333	2205	

We can see that $\psi(X(16)) = \psi^2(X(20))$. Therefore $\psi(32P + 14Q) = \psi^2(67P + 30Q)$. It easy to see that

 $32\psi(P) + 14\psi(kP) = 67\psi^{2}(P) + 30\psi^{2}(kP)$ $32\lambda(P) + 14\lambda(kP) = 67\lambda^{2}(P) + 30\lambda^{2}(kP)$

Now we try to find λ . By [1, Note 3.72] we know that

$$\lambda^2 - \lambda + 2 \equiv 0 \mod 4187$$
$$\lambda^2 - \lambda - (4185 + (4187.x)) = 0, x \in \mathbb{Z}$$
Choose $x = 2, \lambda^2 - \lambda - 8372 = 0$.

We can see that $\lambda = 92$ and $\lambda = -91 \equiv 4096 \pmod{4187}$ fulfill above equation. Therefore we may choose $\lambda = 4096$.

Since $\lambda = 4096$, we get $32(4096) + 14(4096)k = 67(4096)^2 + 30(4096)^2k$, hence $k = \frac{868}{1516}$ (mod 4187)=100.

Therefore, in this case, by using Frobenius map we just need 20 iterations to find two collision points. Note that we also need 12 times squaring per iteration, which is easily done by cyclic shift.

Notice that $-\psi^{12}(X(8)) = \psi(X(11)) = (5672, 3138)$. It means

$$-\psi^{12}(15P + 4Q) = \psi(30P + 11Q)$$

$$-15\lambda^{12}P - 4\lambda^{12}kP = 30\lambda P + 11\lambda kP$$

$$(11\lambda + 4\lambda^{12})kP = -(15\lambda^{12} + 30\lambda)P$$

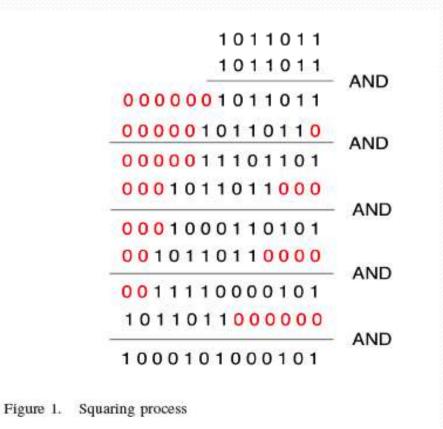
$$(11(4096) + 4(4096)^{12})kP = -(15(4096)^{12} + 30(4096))P$$

$$k = \frac{2040}{4146} \pmod{4187}$$

$$k = 100$$

Therefore by Frobenius-Negation map we just need 11 iterations to get two collision points.

Comparison


The following is the comparison between the experimental results and the expected number of iterations explained in previous section:

Method	By Experiment	By Formule
	number of iterations	number of iterations
Ordinary	100	$81.09 \sim 81$
Negation	65	$57.34 \sim 57$
Frobenius	20	$22.49 \sim 22$
Frob-Neg	11	$15.9 \sim 16$

Table 25. Comparison of number of iterations

Implementation- for longer bit [Paryasto-Rahardjo2013]

 Algorithm of squaring operation in polynomial basis implemented using C programming language


```
void squarePB(int A[], int p[]){
    int i, j, k, x, y;
    int B[m], result[m];
    int p_long[m]; // to hold poly_irred in a longer
        array, making computation easier
    int iteration;
    int flag = 1;
    for (i = 0; i < m; i++)
        p_long[i] = 0;
    for (i = 0; i <= n; i++)
        p_long[i] = p[i];
    </pre>
```

```
13
14
      //initializing B[]
15
      for (i = 0; i < m; i++)
16
        B[i] = 0;
17
        result[i] = 0;
18
      }
19
20
      i = n - 1:
21
      for (i = m-1; i \ge n-1; i--)
22
        B[i] = A[i];
23
        j ——:
24
      }
25
26
      if (A[n-1] == 1)
27
      for (i = 0; i < m; i++)
28
        result[i] = B[i];
29
30
      for (k = n-2; k \ge 0; k--) \{ //if \ bit \ I, \ shift-lef \}
            and xor
                            if (A[k] == 1)
31
          //shifting B to the left one bit
32
          for (i = 0; i < m-1; i++)
            B[i] = B[i+1];
33
34
            //and make sure to give trailing Os
                                  B(m-1) = 0:
35
          1/xor
          for (i = 0; i < m; i++)
36
             result[i] = result[i] ^ B[i];
37
38
39
      else { // if the bit is 0, just shift no xor
                      // shifting B to the left one bit
40
      for (i = 0; i < m-1; i++)
41
        B[i] = B[i+1];
42
43
      //and make sure to give trailing Os
44
        B[m-1] = 0;
45
        }
46
    }
```

$$P(x) = x^7 + x + 1 = 10000011$$

result 0	1000101000101	
poly_red	1000001100000	XOR
result 1	0000100100101	XOII
shifted poly_red	000010000110	XOR
result 2 (final)	0000000100011	- YOU
	\downarrow	
	x ⁵ + x + x	

Figure 2. Reduction process

```
l/now is the part of reduction
 1.
 2
     iteration = 0:
 3
     k = 0;
 \mathbf{4}
     while (flag == 1){
 5
        if (k \ge m/2)
         flag = 0;
  6
  7
       if (result[k] == 1) \{ // do xor \}
 8
 9
         iteration ++:
 10
 11
         i = 0;
 12
         for (i = 0; i < m; i++)
 13
            result[i] ^= p_long[j];
 14
           j++;
 15
         }
 16
 17
         k = 0:
 18
       Ł
 19
       else { // do shift to the right, no need xor-ing
                          iteration++:
 20
         //shifting result to the right one bit
 21
f22
         for (i = m-1; i \ge 0; i--)
 23
           p_long[i] = p_long[i-1];
 24
 25
         //make sure to give trailing Os
         p_{10ng[0]} = 0;
 26
 27
 28
             k++;
 29
       }
 30
```

Conclusion

- By using Negation and Frobenius map simultaneously we can find two collision points faster than ordinary Pollard Rho.
- Random Walk is not always speeding up the Algorithm, should be combined with Frobenius-Negation.
- Unfortunately Frobenius only works for Koblitz curves
- Koblitz curves could be considered "weak".
- To speed up the squaring for Frobenius, we suggest the use of normal basis.

OUTPUT (1 proc intl conf, 3 jurnal intl, 1 draft jurnal nas)

- [Muchtadi2012] I.Muchtadi-Alamsyah, Pollard Rho Algorithm for Elliptic Curves over Composite Fields, *Proceeding International Conference on Mathematics and Statistics* 2012, PM 10.
- [Muchtadi-Ardiansyah-Carita2013a] I.Muchtadi-Alamsyah, T.Ardiansyah, S.S.Carita, Pollard Rho Algorithm for Elliptic Curves over GF(2ⁿ) with Negation and Frobenius Map, accepted in *Adv Sciences Letters* Vol 20 Issue 1, 2014.
- [Muchtadi-Ardiansyah-Carita2013b]] I.Muchtadi-Alamsyah, T.Ardiansyah, S.S.Carita, Pollard Rho Algorithm for Elliptic Curves over GF(2ⁿ) with Negation Map, Frobenius Map and Normal Basis, submitted to Far East Journal of Mathematical Sciences.

OUTPUT

- [Muchtadi-Ardiansyah-Carita2013b]] I.Muchtadi-Alamsyah, T.Ardiansyah, S.S.Carita, Pollard Rho Algorithm for Elliptic Curves over GF(2ⁿ) with Random Walk, Frobenius Map and Normal Basis, submitted to Journal of Software.
- [Paryasto-Rahardjo2013] M.Paryasto, B. Rahardjo, Implementation of Polynomial Basis Squaring, draft.

OUTPUT (Tugas Akhir)

- M. Saputra, Algoritma Pollard Rho dan Modifikasinya pada Kriptografi Kurva Eliptik, Tugas Akhir Sı Matematika ITB, 2012.
- T. Ardiansyah, Algoritma Pollard Rho pada Kurva Eliptik atas Lapangan GF(2ⁿ) dengan Pemetaan Frobenius dan Negasi, Tugas Akhir S1 Matematika ITB, 2013.
- S.S.Carita, Algoritma Pollard Rho pada Kurva Eliptik atas Lapangan GF(2ⁿ) dengan Pemetaan Frobenius, Negasi dan Basis Normal, Tugas Akhir Si Matematika ITB, 2013.

Presentation

- ICT Asia Regional Meeting, STIC Asie, Bangkok 29-31
 October 2012, paper title : Basis Conversion in Composite Field
- International Conference on Mathematics, Statistics and Its Applications, Bali, 19-21 November 2012, paper title: Pollard Rho Algorithm for Elliptic Curves over Composite Fields
- International Conference on Internet Services Technology and Information Engineering, Bogor, 11-12 May 2013, paper title : Pollard Rho Algorithm for Elliptic Curves over GF(2ⁿ) with Negation and Frobenius Map.

ACKNOWLEDGEMENT

• This research is funded by Asahi Glass Foundation Grant based on Surat Perjanjian Pelaksanaan Penelitian Nomor : 2004a/I1.C01/PL/2012.

REFERENCES

- [Muchtadi2012] I.Muchtadi-Alamsyah, Pollard Rho Algorithm for Elliptic Curves over Composite Fields, *Proceeding International Conference on Mathematics and Statistics* 2012, PM 10.
- [Muchtadi-Ardiansyah-Carita2013a] I.Muchtadi-Alamsyah, T.Ardiansyah, S.S.Carita, Pollard Rho Algorithm for Elliptic Curves over GF(2ⁿ) with Negation and Frobenius Map, accepted in *Adv Sciences Letters* Vol 20 Issue 1, 2014.
- [Muchtadi-Ardiansyah-Carita2013b]] I.Muchtadi-Alamsyah, T.Ardiansyah, S.S.Carita, Pollard Rho Algorithm for Elliptic Curves over GF(2ⁿ) with Negation Map, Frobenius Map and Normal Basis, submitted to Far East Journal of Mathematical Sciences.

References

- [Muchtadi-Ardiansyah-Carita2013b]] I.Muchtadi-Alamsyah, T.Ardiansyah, S.S.Carita, Pollard Rho Algorithm for Elliptic Curves over GF(2ⁿ) with Random Walk, Frobenius Map and Normal Basis, submitted to Journal of Software.
- [Paryasto2012] M.W. Paryasto, Arsitektur Unit Pengali Composite Field Kombinasi MH-KOA untuk Elliptic Curve Cryptography, Disertasi Doktor ITB, 2012.
- [Paryasto-Rahardjo2013] M.Paryasto, B. Rahardjo, Implementation of Polynomial Basis Squaring, draft.
- [Paryasto-Rahardjo-Muchtadi-Kuspriyanto2010] M. W.Paryasto, B.Rahardjo, I. Muchtadi-Alamsyah, Kuspriyanto, *Rancangan Unit Aritmetika Finite Field Berbasis Composite Field*, Prosiding MUNAS Aptikom 2010, pp. 98-102

REFERENCES

- [Paryasto-Rahardjo-Muchtadi-Kuspriyanto2011] M. W.Paryasto, B.Rahardjo, I. Muchtadi-Alamsyah and Kuspriyanto, Implementasi Composite Field pada Elliptic Curve Cryptography, Jurnal Ilmiah Ilmu Komputer Vol.7 No.2 Maret 2011
- [Paryasto-Rahardjo-Yuliawan-Muchtadi-Kuspriyanto2012] M. W. Paryasto, B.Rahardjo, F. Yuliawan, I.Muchtadi-Alamsyah and Kuspriyanto, Composite Field Multiplier Based on Look-up Table for Elliptic Curve Cryptography Implementation, ITB Journal of Information and Communication Technology Vol 6 no 1 (2012) 63-81

• THANK YOU VERY MUCH FOR YOUR ATTENTION