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MOTIVATION
Devices with limited 
sources  are easy to get 
wired /attacked

We need cryptography 
implementation on these 
kinds of devices

ECC is one of the solution, 
but ECC needs big 
computation



Elliptic curve
y2 = x3 − x



y2 = x3 − ½x + ½



Elliptic curve over F
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y2 = x3 + x + 1
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Elliptic Curve Addition

P+Q

P

Q



Multiples in Elliptic Curves 1
� The interest in Elliptic Curve Addition is the 

process of adding a point to itself.

� That is given a point P find the point P+P or 2P.

� This is done by drawing a line tangent to P and 
reflecting the point at which it intercepts the curve

� P can be added to itself k times resulting in a point W = 
kP. 



Multiples in Elliptic Curves 1

P+P = 2PP+P = 2P

P



Multiples in Elliptic Curves 2
� Finding the value of 3P:

P+P = 2P

3P

P



Elliptic Curve Encryption
� INPUT: Prime p, elliptic curve E, point P of order n, 

private key d∈[1,n-1], plaintext m

� OUTPUT: Cipher text (C1,C2)

1. Compute Q=dP1. Compute Q=dP

2. Represent the message m as the point M in E(Fp)

3. Select k ∈[1,n-1]

4. Compute C1 = kP

5. Compute C2 = M + kQ

6. Return (C1,C2)



Elliptic Curve Decryption
� INPUT : prime p, elliptic curve E, point P of order n, 

private key d, ciphertext (C1,C2)

� OUTPUT: Plaintext m

1. Compute M = C2-dC1 and extract m from M1. Compute M = C2-dC1 and extract m from M

2.Return (m).

(M = C2-dC1= M+kQ –dkP= M + kdP – dkP)



Elliptic Curve Security
� The security of the Elliptic Curve algorithm is based on 

the fact that it is very difficult (as difficult as factoring) 
to solve the Elliptic Curve Discrete Logarithm 
Problem:Problem:

Given two points P and Q where Q = kP, find the value of 
k



POLLARD RHO

Let , with , and  and  such that  in . We aims to find  
 

The Algorithm 
1. By using a hash function, we divide  into 3 sets,  with almost  equal number of1. By using a hash function, we divide  into 3 sets,  with almost  equal number of

elements, but  
2. Define an iteration function : 

         (1)   

Since  if , then if  is in , in some time  and the values of the
iteration functions will all be That is why we makethe assumption of . 

 







Finite Field
� Operations over the real numbers are slow and 

inaccurate due to round-off error

� Need to be faster and accurate� Need to be faster and accurate

� Accurate and efficient :

� Prime field GF(p)

� Binary field GF(2m )

� Composite Field GF((2m)n)



COMPOSITE FIELD
� Using composite field, we may divide the computation 

into subfields from GF(2k) into GF((2n)m ) where k = 
nm.
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MULTIPLIER 

� MULTIPLIER :

� Create/improve algorithms

� Design implementation

� LUT is used for multiplication in ground field 
GF(2^13) and Karatsuba Offman Algorithm for the 
extension field multiplication GF(2^13)^23



Multiplier for GF(2^13)

[Paryasto-Rahardjo-Muchtadi-Kuspriyanto2010]



MULTIPLIER GENERAL 

ARCHITECTURE

[Paryasto-Rahardjo-Yuliawan-Muchtadi-Kuspriyanto2012]



ECC ARCHITECTURE WITH 

COMPOSITE FIELD

[Paryasto-Rahardjo-Muchtadi-Kuspriyanto2011]



[Paryasto2012]



[Paryasto2012]



Result 1 [Muchtadi2012]
� Speed up the Pollard Rho algorithm for elliptic curves 

over composite fields, by using the multiplier that 
combines the LUT and KOA proposed in 
[Paryasto2012][Paryasto2012]



Elliptic Curves over GF(2n)
Elliptic curve over  GF(2n) is defined with Weierstrass
equation, which after transformed by admissible change 
of variables, can be written as 

� where O is the projective closure of the equation .



Modified Pollard Rho
To speed up Pollard Rho, the iterating function f is 
defined on the equivalence class rather than just one 
point in <P> . 

The expected number of iterations for the modified 
Pollard Rho algorithm is 





Experimental Results1 [Muchtadi-

Ardiansyah-Carita2013a]



Computation of Equivalence 

classes



Equivalence class (contd)



Result with Frobenius



Result with Frobenius-Negation

Therefore by Frobenius-Negation map we just need one iteration 

to get collision points. 



Comparison



Experimental Result 3, using Random Walk 

[Muchtadi-Ardiansyah-Carita2013c]



Comparison
Method By experiment By formule

Ordinary 8 11

Negation 8 8

Frobenius 4 4

Frob-neg 1 3

Random Walk 6 11

Frob-Random Walk 1 4



Random Walk with new point





Comparison
Method By experiment By formule

Ordinary 16 11

Negation 9 8

Frobenius Random Walk 5 4

Frob-neg Random Walk 4 3

Random Walk 22 11



Speeding the Squaring using 

Normal Basis
� A polynomial basis in GF(2n) is a basis of the form 

{1,α, α2,…, αn-1}

� A normal basis in GF(2n) is a basis of the form 
{α, α2, …, α2^n-1}{α, α2, …, α2^n-1}

� In normal basis squaring is just a cyclic shift of the 
coordinates.

For example

� w = 10110101

� w^2 = 11011010

� w^4 = 01101101







Experimental Result 2 [Muchtadi-

Ardiansyah-Carita2013b]







The use of Frobenius, Negation 

and Normal Basis













Comparison



Implementation- for longer bit 

[Paryasto-Rahardjo2013]
� Algorithm of squaring operation in polynomial basis 

implemented using C programming language











Conclusion
� By using Negation and Frobenius map simultaneously 

we can find two collision points faster than ordinary 
Pollard Rho. 

� Random Walk is not always speeding up the � Random Walk is not always speeding up the 
Algorithm, should be combined with Frobenius-
Negation.

� Unfortunately Frobenius only works for Koblitz curves

� Koblitz curves could be considered “weak”.

� To speed up the squaring for Frobenius, we suggest the 
use of normal basis.
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Presentation
� ICT Asia Regional Meeting, STIC Asie, Bangkok 29-31 

October 2012, paper title : Basis Conversion in Composite 
Field

� International Conference on Mathematics, Statistics and � International Conference on Mathematics, Statistics and 
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Pollard Rho Algorithm for Elliptic Curves over Composite 
Fields

� International Conference on Internet Services Technology 
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title : Pollard Rho Algorithm for Elliptic Curves over GF(2n) 
with Negation and  Frobenius Map.
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