Enter your keyword

2-s2.0-0028991455

[vc_empty_space][vc_empty_space]

Phosphorus movement through soils and groundwater: Application of a time-dependent sorption model

Ho G.E.a, Notodarmojo S.b

a Institute for Environmental Science, Murdoch University, Australia
b Department of Environmental Engineering, Bandung institute of Technology, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Pollution of groundwater, wetlands, rivers, estuaries and near shore waters by phosphorus is now fairly common due to run-off from agricultrual areas and wastewater discharges. In the application of fertilisers in agriculture it has been observed that sandy soils result in high phosphorus concentrations in the run-off. On the other hand loamy soils result in less phosphorus run-off. Phosphate-phosphorus sorption by soils has been observed to be time dependent. A model has been developed to describe the movement of phosphorus through soils to take into account the processes of convection, dispersion and time-dependent sorption. The model enables prediction of phosphorus breakthrough in a soil column. A comparison is made of predicted breakthrough curves with results obtained using two types of soil: a sandy soil from Australia and a loamy soil from Indonesia. The model has direct application to field situations where phosphate-phosphorus moves vertically downward through the unsaturated zone to the water table, and horizontally through the groundwater aquifer. Parameters of the model can potentially be derived from simple batch sorption experiments. © 1995, International Association on Water Quality. All rights reserved.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Loamy soil,Saturated flow,Solute transport,Water table[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Australia,Indonesia,loamy soil,phosphate-phosphorus,sandy soil,saturated flow,solute transport modelling,time-dependent sorption,unsaturated flow[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/0273-1223(95)00409-G[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]