Enter your keyword

2-s2.0-0030617264

[vc_empty_space][vc_empty_space]

Particle deposition during membrane filtration of colloids: Transition between concentration polarization and cake formation

Chen V.a, Fane A.G.a, Madaeni S.a, Wenten I.G.b

a UNESCO Ctr. Memb. Sci. and Technol., Sch. of Chem. Eng. and Indust. Chem., University of New South Wales, Australia
b Ctr. for Memb. Sci. and Technology, Institute of Technology Bandung, Jurusan Tecknick Kimia ITB, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]The transition from concentration polarization to cake formation has been studied for the membrane filtration of colloidal silica by imposing flux and observing the system response. A critical flux (J(crit)) has been measured, below which transmembrane pressure drop, ΔP, is stable for increasing and decreasing flux. The flux-pressure profiles for operations below J(crit) show little (for MF) or negligible (for UF) hysteresis. Above J(crit) the pressure has a period of instability for increasing and decreasing flux, and there is significant hysteresis. It appears that once J(crit) is exceeded, the colloids in the polarized layer form a consolidated cake structure that is slow to depolarize and which reduces the flux. Evidence for cake deposition was obtained from electron micrographs. The depolarization can be increased by crossflow, by washing, and increasing pit. It was observed that the slow incrementation of flux to a given high value can result in significantly lower ΔP than the direct application of that flux. These differences are ascribed to formation of a stagnant, highly concentrated layer near the membrane surface due to consolidation and aggregation of solute resulting from very rapid flux increases.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Cake formation,Concentration polarization,Critical flux,Depolarization,Membrane filtration,Microfiltration[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Concentration polarization,Critical flux,Fouling,Microfiltration,Ultrafiltration[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The authors would like to thank P. Aimar, A. Jonquieres and R. Field for useful discussions. This work was funded by the Australian government through its support for the Special Research Centre for Membrane Science and Technology. Material support from Millipore Australia is gratefully acknowledged.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/S0376-7388(96)00187-1[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]