[vc_empty_space][vc_empty_space]
Saturation exponent at various wetting condition: Fractal modeling of thin-sections
Abdassah D.a, Permadi P.a, Sumantri Y.b, Sumantri R.c
a Institut Teknologi Bandung, Indonesia
b Universitas Pembangunan Nasional-Veteran, Indonesia
c
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Saturation exponents, along with resistivity log data, are usually needed for evaluating the initial saturation of a hydrocarbon reservoir. A number of experimental investigations have shown that reservoir wettability affects the exponent value. A remarkable divergence of conclusions, however, still appears in the literature. This paper presents the results of a study based on the application of fractal concepts. The concepts have been used to derive parameters such as clay content and electrical tortuosity of thin-sections at a given wetting condition and for various water saturations. A general equation of electrical resistivity was then developed, incorporating these parameters. The advantage of this approach is that, it is independent of rock-fluid equilibrium problems that commonly influence laboratory measurements. The present work employed 20 thin-sections of limestone and sandstone. It was found that the lowest exponent of 1.8 was obtained for strongly water-wet shaley sandstone and the highest value of 5.3 was for strongly oil-wet conditions. The exponent consistently increases as the wetting condition is shifted from strongly water-wet toward oil-wet. It is close to 2.0 for clean sandstone at strongly water-wet conditions; this supports Archie’s empirical formula. © 1998 Elsevier Science B.V. All rights reserved.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Archie’s formula,Electrical tortuosity,Saturation exponent[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Electrical tortuosity,Fractal analysis,Saturation exponent,Thin-section,Wettability[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/S0920-4105(98)00014-X[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]