Enter your keyword

2-s2.0-0033377216

[vc_empty_space][vc_empty_space]

Hamiltonian formulation for solitary waves propagating on a variable background

Grimshaw R.a,b, Pudjaprasetya S.R.a

a Department of Mathematics and Statistics, Monash University, Australia
b Department of Mathematics, Institute of Teknologi, Bandung, University of Technology, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Solitary waves propagating on a variable background are conventionally described by the variablecoefficient Kortevveg-deVries equation. However, the underlying physical system is often Hamiltonian, with a conserved energy functional. Recent studies for water waves and interfacial waves have shown that an alternative approach to deriving an appropriate evolution equation, which asymptotically approximates the Hamiltonian, leads to an alternative variable-coefficient Korteweg-deVries equation, which conserves the underlying Hamiltonian structure more explicitly. This paper examines the relationship between these two evolution equations, which are asymptotically equivalent, by first discussing the conservation laws for each equation, and then constructing asymptotically a slowly-varying solitary wave. © 1999 Kluwer Academic Publishers.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Hamiltonian formulation,Korteweg de Vries,Solitary waves[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Hamiltonian systems,Korteweg-devries,Solitary waves[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1023/a:1004541906496[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]