[vc_empty_space][vc_empty_space]
Isolation and characterization of 2,3-dichloro-1-propanol-degrading rhizobia
Effendi A.J.b, Greenaway S.D., Dancer B.N.
a Cardiff School of Biosciences, Cardiff University, United Kingdom
b Inter Univ. Center in Biotechnology, Institute Technology Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]2,3-Dichloro-1-propanol is more chemically stable than its isomer, 1,3- dichloro-2-propanol, and is therefore more difficult to degrade. The isolation of bacteria capable of complete mineralization of 2,3-dichloro-1- propanol was successful only from enrichments at high pH. The bacteria thus isolated were found to be members of the α division of the Proteobacteria in the Rhizobium subdivision, most likely Agrobacterium sp. They could utilize both dihaloalcohol substrates and 2-chloropropionic acid. The growth of these strains in the presence of 2,3-dichloro-1-propanol was strongly affected by the pH and buffer strength of the medium. Under certain conditions, a ladder of four active dehalogenase bands could be visualized from this strain in activity gels. The enzyme involved in the complete mineralization of 2,3- dichloro-1-propanol was shown to have a native molecular weight of 114,000 and consisted of four subunits of similar molecular weights.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1128/AEM.66.7.2882-2887.2000[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]