[vc_empty_space][vc_empty_space]
Large variations in NLS bi-soliton wave groups
Van Groesen E., Nusantara T.b, Soewono E.b
a MESA+ Research Institute, University of Twente, Netherlands
b Department of Mathematics and Center of Mathematics, Institut Teknologi Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]The nonlinear Schrödinger (NLS) equation describes the spatial-temporal evolution of the complex amplitude of wave groups in beams and pulses in both second and third order nonlinear material. In this paper we investigate in detail the wave group that has the exact two-soliton solution as amplitude, and show that large variations in the amplitude appear to form a pattern that, at the peak interaction, resembles quite well the linear superposition. The complexity of the phenomenon is a combination of nonlinear effects and linear interference of the carrier waves: the characteristic parameter is the quotient of wave amplitude and frequency difference of the carrier waves, which is also proportional to the quotient of the modulation period of the carrier waves during interaction and the interaction period of the soliton envelopes.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Carrier wave,Linear superposition,Nonlinear Schrodinger equation[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Bi-soliton wave groups,Carrier wave,Envelopes,Nonlinear Schrödinger equation,Phase-amplitude representation[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]*The research is part of Scientific Cooperation Netherlands Indonesia in Applied Mathematics, partly funded by KNAW (Royal Netherlands Academy of Arts and Sciences)[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1023/A:1010863421668[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]