[vc_empty_space][vc_empty_space]
Synergistic effects of novel battery manufacturing processes for lead-acid batteries. Part I: Charge/discharge cycling of batteries
Rochliadi A.a,b, De Marco R.b
a Department of Chemistry, Institut Teknologi Bandung, India
b Department of Applied Chemistry, Curtin University of Technology, Australia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]The present research aimed to ascertain if the merging of novel battery manufacturing processes could achieve an enhancement in the improvement of battery cycle-life. We found that the melding of novel battery manufacturing processes leads to synergistic effects with regard to the cycling performance of lead-acid batteries. The novel battery manufacturing processes employed in this study include: (i) grid cleaning; (ii) positive active material compression; and (iii) conductive additives in the positive paste. It was found that a combination of positive active material compression and grid cleaning approximately doubles the durability of batteries and is consistent with the additive effects of the individual treatments, while a combination of positive active material compression and conductive additives yields an approximate 30% boost in performance compared to the additive effects of the isolated treatments. Synergistic effects were not noted for other combinations of the aforementioned battery manufacturing practices.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Battery manufacturing processes,Conductive additives,Grid cleaning,Synergistic effects[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Charge/discharge cycling,Lead/acid battery,Positive active material,Premature capacity loss,Synergistic effects[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The authors thank the Center Grant Project for Department of Chemistry ITB-Jakarta, and the Alternative Energy Development Board (AEDB) of Western Australia for funding this res earch.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1023/A:1020941428332[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]