[vc_empty_space][vc_empty_space]
Different roles of anisotropy and disorder on the vortex matter of Bi2Sr2CaCu2O8+δ single crystal
Darminto D.a, Diantoro M.b,c, Sutjahja I.M.b, Nugroho A.A.b, Loeksmanto W.b, Tjia M.O.b
a Department of Physics, Faculty of Mathematics and Science, Sepuluh Nopember Institute of Technology, Indonesia
b Department of Physics, Bandung Institute of Technology, Indonesia
c Department of Physics, Universitas Negeri Malang, Indonesia
d Van der Waals-Zeeman Institute, University of Amsterdam, Netherlands
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]The oxygen doped and Pb-substituted single crystalline Bi2Sr2CaCu2O8+δ samples having Tc,on and anisotropy (γ2) ranging respectively from 65 to 93 K and from 773 to 49,715 have been studied in the basis of magneto-resistance and magnetization data. It is found that the lowering of anisotropy due to higher oxygen content or Pb substitution is responsible for the reduction of magnetic field-induced transitional broadening and a shift of Hirr(T) and Hg(T) to higher temperatures and magnetic field. Meanwhile, the increasing disorder manifested by decreasing Tc also leads to the extended range of appearance for the second magnetization peak (SMP) and enlarged critical glassy region. It is shown that decreasing anisotropy does not necessarily lead to the lowering of Tc in contrast to the monotonic dependence of Tc on the disorder measured in the temperature range of SMP effect. Additionally, a remarkable monotonic correlation between Tc and the glassy exponent s has been established. © 2002 Elsevier Science B.V. All rights reserved.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Magnetic resistance,Vortex matters[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Anisotropy and disorder,Bi-2212,Oxygen doping and Pb substitution,Vortex state[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]We wish to thank A.A. Menovsky and K. Kishio for the use of crystal growth facilities and experimental characterization apparatus respectively. This work is partly supported by RUT research grant under the contract no. 207/SP/RUT/BPPT/IV/97. One of authors (D.D.) would like to thank FOM-ALMOS and The Matsumae International Foundation for supporting his research respectively at the University of Amsterdam and the University of Tokyo.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/S0921-4534(02)01475-2[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]