Enter your keyword

2-s2.0-0036911823

[vc_empty_space][vc_empty_space]

DSP based RBF neural modeling and control for active noise cancellation

Bambang R.T.a,b, Anggono L.a,b, Uchida K.a,b

a Dept. Electrical Eng., Bandung Inst. of Technology, Indonesia
b Dept. Electrical Eng., Waseda University, Japan

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]This paper presents active control of acoustic noise using radial basis function (RBF) networks and its digital signal processor (DSP) real-time implementation. The neural control system consists of two stages: first, identification (modeling) of secondary path of the active noise control using RBF networks and its learning algorithm, and secondly neural control of primary path based on neural model obtained in the first stage. A tapped delay line is introduced in front of controller neural, and another tapped delay line is inserted between controller neural networks and model neural networks. An algorithm referred to as FX-RBF is proposed to account for secondary path effects of the control system arising in active noise control. The resulting algorithm turns out to be the filtered-X version of the standard RBF learning algorithm. We address centralized and decentralized controller configuration and their DSP implementation is carried out. Effectiveness of the neural controller is demonstrated by applying the algorithm to active noise control within a 3 dimension enclosure to generate quiet zones around error microphones. Results of the real-time experiments shows that 10-30 dB noise attenuation is obtained, are better than those obtained by classical least mean-square technique, such as FX-LMS.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Active noise control,Least mean square technique,Neural modeling,Noise cancellation,Tapped delay line[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Active noise control,Adaptive nonlinear control,DSP,Radial basis function networks[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]