Enter your keyword

2-s2.0-14544289615

[vc_empty_space][vc_empty_space]

Does shear flow stabilize an immersed thread?

Gunawan A.Y.a, Molenaar J.b, Van De Ven A.A.F.b

a Departemen Matematika, Institut Teknologi Bandung, Indonesia
b Dept. of Math. and Computer Science, Eindhoven University of Technology, Netherlands

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]The stability of one liquid thread immersed in a fluid in a shear field is considered by linear stability analysis. A constant shear stress is imposed far away from the thread. The shear flow tends to deform and elongate the thread. The stability of the thread is characterized by the growth rate of a random perturbation. The equation for the growth rate leads to an eigenvalue problem with the wave number, the ratio of viscosities and the capillary number as parameters. Using Hurwitz’s criterion, we determine the range of the ratio of viscosities for which the shear stabilizes the thread. A critical capillary number above which the thread is always stable is found. Special attention is paid to the special case of thread and fluid having equal viscosity. Then, the critical capillary number can be calculated analytically. © 2004 Elsevier SAS. All rights reserved.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Capillary numbers,Growth rate,Hurwitz’s criterion,Liquid thread,Stability analysis[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Capillary number,Growth rate,Hurwitz’s criterion,Liquid thread,Shear flow,Stability analysis[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This research is supported by QUE-Project (IBRD Loan No.4193-IND) of Departemen Matematika, Institut Teknologi Bandung, Indonesia.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.euromechflu.2004.09.002[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]