[vc_empty_space][vc_empty_space]
A polymer solution process for synthesis of (Y,Gd)3Al 5O12:Ce phosphor particles
Abdullah M.a,b, Okuyama K.a, Lenggoro I.W.a, Taya S.c
a Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, Japan
b Department of Physics, Bandung Institute of Technology, Indonesia
c Research and Development Center, Stanley Electric Co. Ltd., Japan
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Cerium-doped yttrium-gadolinium aluminum garnet, (Y,Gd)3Al 5O12:Ce, shortened here to (Y,Gd)AG:Ce, was systematically prepared by a polymer complex method, using high molecular weight polyethylene glycol (PEG). Without PEG, only large flakes several micrometers in size containing nearly pure (Y,Gd)AlO3 were obtained. Adding PEG dramatically reduced the particle size. However, the (Y,Gd)AG phase was not obtained by merely adding PEG. Instead, mainly (Y,Gd)2O3 and small amount of Ce2O3 were obtained. Simultaneous use of PEG and a flux (simple salt) such as BF2 resulted in the formation of small YAG particles. The presence of the (Y,Gd)AG phase results in intense yellow-green luminescence. By selecting various heating routes, the fractions of cubic and hexagonal phases were controlled. It was found that the luminescence intensity is proportional to the fraction of cubic phase, and is probably independent of the hexagonal phase. © 2005 Elsevier B.V. All rights reserved.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Luminescence intensity,Nanometer sizes,Oxide particles,Solid state reactions[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]We thank to Yasumori Kuromizu and Takanori Nakayu (Hiroshima University) for assistantship. A postdoctoral fellowship (M.A.) and Grant-in-Aids (K.O., I.W.L.) of the Japan Society for the Promotion of Science (JSPS) are gratefully acknowledged. This work was also supported by the New Energy and Industrial Technology Development Organization (NEDO)’s Nanotechnology Particle Project based on fund of Nanotechnology Materials Program provided by the Ministry of Economy, Trade, and Industry (METI), Japan.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.jnoncrysol.2005.01.055[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]