Enter your keyword

2-s2.0-2342518125

[vc_empty_space][vc_empty_space]

Direct preparation of nonagglomerated indium tin oxide nanoparticles using various spray pyrolysis methods

Itoh Y.a, Abdullah M.a,b, Okuyama K.a

a Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, Japan
b Department of Physics, Bandung Institute of Technology, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Indium tin oxide particles were prepared using three different spray synthetic techniques: conventional, salt-assisted, and low pressure. Optimum conditions for the preparation of small size, nonagglomerated particles were investigated for these three methods. The use of the conventional spray pyrolysis method resulted in only larger particles (submicrometer order). Salt-assisted spray pyrolysis (SASP)and low-pressure spray pyrolysis (LPSP) produced highly crystalline, dense, homogeneous, and nearly nonagglomerated nanoparticles that were less than 25 nm in size. The size of the particles was in the range 12-24 nm for the SASP method and 8-14 nm for the LPSP method. In addition, the LPSP method led to the production of single nanometer-size multicomponent particles in a single step with less heating time without the need for any post heat treatment and additives.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Indium tin oxide,Nanometer,Spray pyrolysis[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The authors thank Mr. Kiyohiro Sasakawa for experimental assistance. Grants-in-Aid and a fellowship sponsored by the Ministry of Education, Culture, Sports, Science and Technology of Japan and the Japan Society for the Promotion of Science (JSPS) are gratefully acknowledged. Postdoctoral fellowship from JSPS for M.A. is also acknowledged. This work was also supported in part by the New Energy and Industrial Technology Development Organization (NEDO)’s “Nanotechnology Materials Program–Nanotechnology Particle Project” based on funds provided by the Ministry of Economy, Trade, and Industry (METI), Japan; by Hosokawa Powder Technology Foundation; and by the Sasakawa Scientific Research Grant from The Japan Science Society.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1557/JMR.2004.0141[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]