[vc_empty_space][vc_empty_space]
Break-up of a set of liquid threads under influence of surface tension
Gunawan A.Y.a, Molenaar J.b, Van De Ven A.A.F.b
a Departemen Matematika, Institut Teknologi Bandung, Indonesia
b Department of Mathematics and Computer Science, Eindhoven University of Technology, Netherlands
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]In this paper it is shown how the long-standing problem of the break-up of a cylindrical interface due to surface tension can be generalized to an arbitrary number of interacting interfaces in an arbitrary configuration. A system of immersed threads starting with two types of configurations is studied, i.e., a system of threads on a row and a system of threads at triangular vertices. From these cases, which are worked out in detail, it becomes clear how the stability of an arbitrary configuration can be determined. The (in)stability of the configuration is discussed in terms of the so-called disturbance growth rate. It turns out that the threads break up in specific phase patterns in which neighbouring threads are either in-phase or out-of-phase. For L threads, in principle 2L phase patterns are possible. However, it is shown that the stability of the system directly follows from L so-called basic phase patterns. Special attention is paid to the special case of threads and fluid having equal viscosity. Then, the growth rate can be calculated analytically using Hankel transformations. An estimate for the growth rate in this case, which turns out to be quite sharp, is derived. © 2004 Kluwer Academic Publishers.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Creeping flow,Liquid threads,Phase patterns[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Break-up,Creeping flow,Phase pattern,Surface tension[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This research is supported by QUE-Project (IBRD Loan No.4193-IND) of Departemen Matem-atika, Institut Teknologi Bandung, Indonesia.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1023/B:ENGI.0000042117.09056.ad[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]