Enter your keyword

2-s2.0-27944440071

[vc_empty_space][vc_empty_space]

Inverse learning control using neuro-fuzzy approach for a process mini-plant

Nazaruddin Y.Y.a, Waluyo J.a, Hadisupadmo S.a

a Department of Engineering Physics, Institut Teknologi Bandung, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2003 IEEE.This paper is concerned with a development of an inverse learning control method designed using adaptive neuro-fuzzy controller and its real-time implementation for controlling a process mini-plant. The adaptive neuro-fuzzy approach is implemented to model the dynamic inverse of the plant where, during the learning phase, an off-line and on-line technique will be performed, while in the design of the neuro-fuzzy controller, an adaptive network will be employed as a building block. A hybrid learning rule is also used to minimize the difference between the actual and a given desired trajectory. Experimental results of real-time control of a laboratory-scaled process mini-plant show that the designed on-line inverse learning control technique performs well to the changing dynamics of the plant and tracks the given desired set-points. Performance comparison was also made between the designed and PI controller.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Adaptive Control,Adaptive neuro-fuzzy,Design Methodology,Desired trajectories,Neuro-fuzzy controller,Performance comparison,Programmable controls,Real-time implementations[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Adaptive control,Adaptive systems,Design methodology,Fuzzy neural networks,Fuzzy systems,Inverse problems,Knowledge representation,Neural networks,Process control,Programmable control[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/PHYCON.2003.1236826[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]