[vc_empty_space][vc_empty_space]
Chaos in a coupled oscillators system with widely spaced frequencies and energy-preserving non-linearity
a Departemen Matematika, Bandung Institute of Technology, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]This paper is a sequel to Tuwankotta [Widely separated frequencies in coupled oscillators with energy-preserving nonlinearity, Physica D 182 (2003) 125-149.], where a system of coupled oscillators with widely separated frequencies and energy-preserving quadratic non-linearity is studied. We analyze the system for a different set of parameter values compared with those in Tuwankotta [Widely separated frequencies in coupled oscillators with energy-preserving nonlinearity, Physica D 182 (2003) 125-149.]. In this set of parameters, the manifold of equilibria are non-compact. This turns out to have an interesting consequence to the dynamics. Numerically, we found interesting bifurcations and dynamics such as torus (Neimark-Sacker) bifurcation, chaos and heteroclinic-like behavior. The heteroclinic-like behavior is of particular interest since it is related to the regime behavior of the atmospheric flow which motivates the analysis in Tuwankotta [Widely separated frequencies in coupled oscillators with energy-preserving nonlinearity, Physica D 182 (2003) 125-149.] and this paper. © 2005 Elsevier Ltd. All rights reserved.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Coupled-oscillators,Energy-preserving,Strange attractor[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Bifurcation,Chaos,Coupled-oscillators,Strange attractor[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.ijnonlinmec.2005.02.007[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]