Enter your keyword

2-s2.0-3042820424

[vc_empty_space][vc_empty_space]

Performance of a novel electrodeionization technique during citric acid recovery

Widiasa I.N.a, Sutrisna P.D.b, Wenten I.G.a

a Department of Chemical Engineering, ITB, Indonesia
b Department of Chemical Engineering, UBAYA, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]This paper concerns with the behavior of an electrodeionization (EDI) system for concentration of citric acid from fermentation broth. Commercially cation-exchange membrane (MC-3470) and anion-exchange membrane (MA-3475) were used as ionic selective barriers of the EDI stack. The diluted compartments of the EDI stack were filled with mixed ion-exchange resins (purolite strong acid cation-exchange, C-100E and strong base type I anion resins, A-400). The experiment used feeds with citric acid concentration in the range of 500-10,000 ppm and feed flow rate in the range of 1-4 l h-1. The V-I characteristics indicated that there were essential differences in current transport and electrical resistance between the EDI and the electrodialysis (ED) processes. Moreover, the overall current efficiency was in the range of 40-96% and has been found to be a function of feed concentration and current density. The performance of the EDI system was also stable during 24 h operation. © 2004 Elsevier B.V. All rights reserved.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Citric acid,Ionic barriers[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Citric acid,Continuous deionization,Electrodeionization,Ion-exchange membrane[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]Financial support was obtained from the Ministry of State for Research and Technology, Republic of Indonesia, under grant No. 03/PRU/KMNRT/VI/2000. The support of PT Olah Bumi Mandiri in the form of membranes and other components is gratefully acknowledged. The authors are indebted to CITS-ITB for mechanical assistance.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.seppur.2003.12.020[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]