[vc_empty_space][vc_empty_space]
Numerical and experimental study on railway impact energy absorption using tube external inversion mechanism at real scale
Puja I.W.a, Khairullah A.a, Kariem M.A.a, Saputro A.M.a
a Engineering Design Center, Department of Mechanical Engineering, Bandung Institute of Technology, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Impact energy and deceleration at a certain time are the most influenced factor to passenger’s safety when collision between railway vehicles occurred. In this paper, forced external inversion mechanism is considered as impact energy absorber. This mechanism is selected due to its constant inversion load along uniform tube [5] and the impact force is reduced because of its inertia effect [7]. Material used as energy absorber is mild steel. Numerical analysis using finite element method is utilized to study the energy absorption capacity and deceleration characteristic of tube external inversion mechanism for complex transient problem of collision. The real scale experimental study is used to validate the numerical analysis by crashing a moving vehicle to static train series where the impact energy absorber module using external inversion mechanism is attached in the tip of static train series. Characteristic that consider in numerical and experimental study are deformation and contact force. The deformation differences between numerical and experimental study are under 9%. Whereas for contact force, the experimental result of contact force disposed under 8% of numerical result for velocity of moving train at 10 and 15 km/h.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Collision,External Inversion,Impact,Railway Vehicle[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Collision,Energy Absorber,External Inversion,Impact,Railway Vehicle[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.4028/0-87849-989-x.315[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]