[vc_empty_space][vc_empty_space]
Progressive transform-based phase unwrapping utilizing a recursive structure
Suksmono A.B.a,c,d, Hirose A.b,d
a School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia
b Dept. of Electrical and Electronic Engineering, University of Tokyo, Japan
c School of Electrical Engineering and Informatic, Indonesia
d IEEE, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]We propose a progressive transform-based phase unwrapping (PU) technique that employs a recursive structure. Each stage, which is identical with others in the construction, performs PU by FFT method that yields a solution and a residual phase error as well. The residual phase error is then reprocessed by the following stages. This scheme effectively improves the gradient estimate of the noisy wrapped phase image, which is unrecoverable by conventional global PU methods. Additionally, by incorporating computational strength of the transform PU method in a recursive system, we can realize a progressive PU system for prospective near real-time topographic-mapping radar and near real-time medical imaging system (such as MRI thermometry and MRI flow imager). PU performance of the proposed system and the conventional PU methods are evaluated by comparing their residual error quantitatively with a fringe-density-related error metric called FZX (fringe’s zero-crossing) number. Experimental results for simulated and real InSAR phase images show significant, progressive improvement over conventional ones of a single-stage system, which demonstrates the high applicability of the proposed method. Copyright © 2006 The Institute of Economics, Information and Communication Engineers.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]DEM,FZX number,InSAR,Numerical method,PDE,Progressive phase unwrapping[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]DEM,FFT,FZX number,InSAR,Numerical method,PDE,Progressive phase unwrapping[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1093/ietcom/e89-b.3.929[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]