[vc_empty_space][vc_empty_space]
Binding of tetrakis(pyrazoliumyl)porphyrin and its copper(II) and zinc(II) complexes to poly(dG-dC)2 and poly(dA-dT)2
Tjahjono D.H.a, Kartasasmita R.E.a, Nawawi A.a, Mima S.b, Akutsu T.b, Yoshioka N.b, Inoue H.b
a Department of Pharmacy, Bandung Institute of Technology, Indonesia
b Department of Applied Chemistry, Keio University, Japan
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Interactions of cationic porphyrins bearing five-membered rings at the meso position, meso-tetrakis(1,2-dimethylpyrazolium-4-yl)porphyrin (MPzP; M is H2, CuII or ZnII), with synthetic polynucleotides poly(dG-dC)2 and poly(dA-dT)2 have been characterized by viscometric, visible absorption, circular dichroisim and magnetic circular dichroism spectroscopic and melting temperature measurements. Both H2PzP and CuPzP are intercalated into poly(dG-dC)2 and are outside-bound to the major groove of poly(dA-dT)2, while ZnPzP is outside-bound to the minor groove of poly(dA-dT)2 and surprisingly is intercalated into poly(dG-dC)2. The binding constants of the porphyrin and poly(dG-dC)2 and poly(dA-dT)2 are on the order of 106 M-1 and are comparable to those of other cationic porphyrins so far reported. The process of the binding of the porphyrin to poly(dG-dC)2 and poly(dA-dT)2 is exothermic and enthalpically driven for H2PzP, whereas it is endothermic and entropically driven for CuPzP and ZnPzP. These results have revealed that the kind of the central metal ion of metalloporphyrins influences the characteristics of the binding of the porphyrins to DNA. © SBIC 2006.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Binding mode,Cationic porphyrin,DNA binding,Thermodynamics[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]Acknowledgements This research was supported in part by a Grant-in-Aid for Scientific Research (no. 13554025) from the Ministry of Education, Science, Sports, and Culture of the Japanese Government and a Competitive Research Grant (HB XIII/2005) from the Ministry of National Education of the Indonesian Government. D.H.T. wishes to thank the Hitachi Scholarship Foundation, Tokyo, Japan, for financial support through the Hitachi Research Fellowship.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1007/s00775-006-0105-x[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]