Enter your keyword

2-s2.0-34247367665

[vc_empty_space][vc_empty_space]

Segmented fractal dimension measurement of 1-D signals: A wavelet based method

Nugraha H.B.a, Langi A.Z.R.a

a Department of Electrical Engineering, IURC Microelectronics, Bandung Institute of Technology, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2002 IEEE.Fractal dimension is an important characteristic of signals that contain information about their structure complexity. Although, fractal dimension estimation of geometric objects has shown very good results, it is a big problem to estimate the dimension of a 1-D signal. As the dynamics of the signal may vary over time, then its fractal dimension also varies over time. This paper shows our estimations of fractal dimensions of 1-D signal based on wavelet coefficients which are obtained from the maxima lines of a continuous wavelet transform. Instead of their exact estimated values, we are more interested in analyzing their dimension variation over time. Our measurement shows that a stationary signal has relatively constant dimension, on the other hand, a non-stationary signal has varying dimension. These measurements lead us to acquire a different method of signal characterization.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Biological system modeling,Continuous Wavelet Transform,Dimension measurements,Fractal dimension estimation,Image texture analysis,Shape,Signal characterization,Size measurements[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Biological system modeling,Fractals,Geometry,Image analysis,Image texture analysis,Power measurement,Shape,Signal analysis,Size measurement,Wavelet transforms[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/APCCAS.2002.1114935[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]