[vc_empty_space][vc_empty_space]
Path-kipas Ramsey numbers
Salman A.N.M.a, Broersma H.J.b,c
a Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia
b Department of Computer Science, Durham University, United Kingdom
c Center for Combinatorics, Nankai University, China
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]For two given graphs F and H, the Ramsey number R (F, H) is the smallest positive integer p such that for every graph G on p vertices the following holds: either G contains F as a subgraph or the complement of G contains H as a subgraph. In this paper, we study the Ramsey numbers R (Pn, over(K, ^)m), where Pn is a path on n vertices and over(K, ^)m is the graph obtained from the join of K1 and Pm. We determine the exact values of R (Pn, over(K, ^)m) for the following values of n and m: 1 ≤ n ≤ 5 and m ≥ 3; n ≥ 6 and (m is odd, 3 ≤ m ≤ 2 n – 1) or (m is even, 4 ≤ m ≤ n + 1); 6 ≤ n ≤ 7 and m = 2 n – 2 or m ≥ 2 n; n ≥ 8 and m = 2 n – 2 or m = 2 n or (q · n – 2 q + 1 ≤ m ≤ q · n – q + 2 with 3 ≤ q ≤ n – 5) or m ≥ (n – 3)2; odd n ≥ 9 and (q · n – 3 q + 1 ≤ m ≤ q · n – 2 q with 3 ≤ q ≤ (n – 3) / 2) or (q · n – q – n + 4 ≤ m ≤ q · n – 2 q with (n – 1) / 2 ≤ q ≤ n – 4). Moreover, we give lower bounds and upper bounds for R (Pn, over(K, ^)m) for the other values of m and n. © 2007 Elsevier B.V. All rights reserved.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Ramsey number,Subgraph,Vertices[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Kipas,Path,Ramsey number[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.dam.2006.05.013[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]