Enter your keyword

2-s2.0-34547912944

[vc_empty_space][vc_empty_space]

Effective medium formulation for band structure design of a finite one-dimensional optical grating

Iskandar A.A.a, Yonan W.a, Tjia M.O.a, Van De Voorde I., Van Groesen E.

a Physics of Magnetism and Photonics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia
b Applied Analysis and Mathematical Physics, MESA+ Research Institute, University of Twente, Netherlands

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]A simple mathematical formulation is proposed for tailoring the transmission characteristics of a one-dimensional (1D) finite optical grating for its applications in the pass band and stop band regions without using anti reflection coating (ARC). In this formulation, a frequency dependent continuity function derived from effective boundary condition is shown to determine the envelope function of the transmittance curve. Using this envelope function along with the dispersion relation, the optimization of the grating parameters can be performed to achieve the desired transmittance profile over the predetermined pass band. Meanwhile, using the appropriate part of the transmittance function, the result of optimization for the stop band was also demonstrated for a specific system. © 2007 The Japan Society of Applied Physics.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Bloch-Floquet theorem,One dimensional optical grating,Photonic band structure[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Bloch-Floquet theorem,Effective medium,One dimensional optical grating,Optimization,Photonic band structure[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1143/JJAP.46.187[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]