Enter your keyword

2-s2.0-34648828675

[vc_empty_space][vc_empty_space]

Pneumatic drying of solid particle: Experimental and model comparison

Indarto A.a,b, Halim Y.b, Partoputro P.b

a Process and Environmental Division, Korea Institute of Science and Technology, South Korea
b Department of Chemical Engineering, Institut Teknologi Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]This article presents a mathematical model approach to studying the drying phenomena of solid particle in a pneumatic (flash) dryer. The analysis is focused on the pneumatic momentum, mass, and heat balance of the solid particle when it moves inside the reactor. A fixed bed fluidization model was used to calculate the forces balance on the single solid particle. By solving mass and heat balance occurred in the particle, the water/liquid removal efficiency can be calculated. To validate the model calculations, we conducted a set of experiments and compared the simulation with the experimental data. High-moisture, natural concrete sand, the additional material for portland cement, was used and dried along a vertical cylindrical tube with length of 2 m and diameter of 6.68 cm. The drying gas was supplied by a high-capacity air blower which was connected to the burner to produce 120 m3/h of drying gas with maximum temperature of 800C.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Heat balance,Pneumatic drying,Pneumatic momentum,Pneumatic transport[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Mass-heat balance,Pneumatic drying,Pneumatic drying model,Pneumatic transport[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1080/08916150701418252[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]