[vc_empty_space][vc_empty_space]
Improved upper bounds for λ-backbone colorings along matchings and stars
Broersma H.a, Marcha B.b, Paulusma D.a, Salman A.N.M.c
a Department of Computer Science, Durham University, United Kingdom
b Faculty of Economics and Business Administration, Department of Quantitative Economics, University of Maastricht, Netherlands
c Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]We continue the study on backbone colorings, a variation on classical vertex colorings that was introduced at WG2003. Given a graph G = (V, E) and a spanning subgraph H of G (the backbone of G), a λ-backbone coloring for G and H is a proper vertex coloring V → {1, 2, . . . , ℓ} of G in which the colors assigned to adjacent vertices in H differ by at least λ. The main outcome of earlier studies is that the minimum number ℓof colors for which such colorings V → {1, 2, . . ., ℓ} exist in the worst case is a factor times the chromatic number (for all studied types of backbones). We show here that for split graphs and matching or star backbones, ℓis at most a small additive constant (depending on λ) higher than the chromatic number. Despite the fact that split graphs have a nice structure, these results are difficult to prove. Our proofs combine algorithmic and combinatorial arguments. We also indicate other graph classes for which our results imply better upper bounds on ℓ than the previously known bounds. © Springer-Verlag Berlin Heidelberg 2007.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Chromatic number,Classical vertex colorings[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1007/978-3-540-69507-3_15[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]