Enter your keyword

2-s2.0-4444301669

[vc_empty_space][vc_empty_space]

Electrically anisotropic conductive adhesives: A new model for conduction mechanism

Shi F.G.a, Abdullah M.b,d, Chungpaiboonpatana S.a, Okuyama K.b, Davidson C.c, Adams J.M.c

a School of Engineering, University of California, Irvine, 92697-2575, United States
b Faculty of Engineering, Hiroshima University, Kagamiyama, Hiroshima, 739-8527, Japan
c Conexant System Inc., Newport Beach, 92660, United States
d Department of Physics, Bandung Institute of Technology, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 1999 IEEE.A new model for the force-resistance relationship for anisotropic conductive adhesives is introduced by considering for the first time the effect of metal particle size distribution. It is shown that there is a universal power-law relationship between the applied force and the resistance of anisotropic ECAs. The theoretical predictions are found to be fully supported by experimental observations.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Anisotropic conductive adhesives,Applied forces,Conduction Mechanism,Force resistance,Universal power law[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]Figure 7 shows the dependence of resistance on the applied force for plastic case for some values of particles mean size. The number of particles in assembly and standard deviation used are lo5 particles and 5pm, respectively. It is seen that, the resistance in- creases in magnitude with mean particle size but not so sensitive compared to that with standard deviation. The dependence of resistance on external force also takes the form of eq. (21). For elastic deformation, curves of resistance with respect to applied force are ,almost coincide for various values of particles mean size. IV. Conclusions We have developed a new model for the force-resistance relationship for aniotropic conductive adhesives by considering the effect of size distribution of filler particles. It is shown that there is a univerisal power-law relationship between the applied force and the resistance of anisotropic ECAs. The force dependence of the resistance is weak if the filler particles are non-monosized in comparison with that for the case of monosized filler particles. It is also found that the standard deviation of particle size distribution has a significant effect on the resistance of particles. On the other hand, the effect of particle mean size on the resistance is relatively weak. The resistance is found to be lower if the particle-plate intereaction is elastic rather than plastic. V. Acknowledgements A Monbusho scholarship for Mikrajuddin is gratefully acknowledged. The authors are alsso thankful to the support provided by JSPS, Conexant Systems (formally Rokwell Semiconductor) and the Micro Program. tpermanent address: Department of Physics, Bandung Institute of Technology, Bandung 40132, Indonesia [l]M . A. Gaynes, R. H. Lewis, R. F. Sard, and J. M. Roldan, IEEE Trans. Comp. Packag. Manufact. Tecnol. B 18, 299 (1995). [2] Z. Lai and J. Liu, WEE Trans. Comp. Packag. Manufact. Tecnol. B 19, 644 (1996). [3] A. Mikrajuddin, F.G. Shi, S. Chungpaiboon-patana, K. Okuyama, C. Davidson, and J. M. Adams (unpublished). [4]G . R. Ruschau, S. Yoshikawa, and R. E. Newnhan, J. Appl. Phys. 72, 953 (1992). [5] W. R. Lambert, J. P. Mutchel, J. A. Suchman, and J. A. Fulton, 39th Electronic Components Conference, Houston, Texas, p. 99-106 (1989). [6] J. A. Fulton, D. R. Horton, R. C. Moore, W. R. Lambert, S. Jin, R. L. Opila, R. C. Sherwood, T. H. Tiefel, and J. J. Mottine, 39th Electronic Components Conference, Houston, Texas, p. 71-77 (1989). [7] R. Holm, Electric Contacts, Berlin: Springer-Verlag (1967). [8] F. L. Jones, The Physics of Electrical Contacts, Oxford: Clarendon Press (1957).[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ISAPM.1999.757305[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]