Enter your keyword

2-s2.0-44649169640

[vc_empty_space][vc_empty_space]

Resolving complexities in healthcare waste management: A goal programming approach

Chaerul M.a, Tanaka M.b, Shekdar A.V.b

a Graduate School of Natural Science and Technology, Okayama University, Japan
b Faculty of Civil Engineering and Environmental, Institut Teknologi Bandung, Indonesia
c Japan

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]The wide variety of activities at healthcare facilities generates different types of waste. There is always a danger of spreading infection due to mishandling of infectious waste or sharps. Hence, a variety of policies and actions have been taken to improve healthcare waste management systems. A large body of literature is available which suggests methods for tackling different problematic situations but management is confronted with a variety of complex problems, such as the choice of technological options to control infection, legal and budget restrictions and the timely removal of waste, which can, at times, conflict with each other. Hence, a planning model is presented that is based on a trans-shipment goal programming approach wherein the waste flow is optimized for multiple objectives under different priority structures or with different relative importance (weights). The use of the model is demonstrated as a decision-making tool that would help the management to understand the effects of their policies on the system performance. The model is validated for a case application representing a real-life situation. It can be easily seen that, in the case in which the management is biased toward a higher level of safety protection towards infection control, they have to compromise on cost control and to some extent on environmental pollution control. © ISWA 2008.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Healthcare waste,Infection control,Multiple objectives,Trans-shipment goal programming[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Healthcare waste,Infection control,Multiple objectives,Priority structure,Safety protection,Trans-shipment goal programming,Wmr 1011-6[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1177/0734242X07076939[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]