[vc_empty_space][vc_empty_space]
Preparation of oxide particles with ordered macropores by colloidal templating and spray pyrolysis
Abdullah M.a,c, Iskandar F.a, Shibamoto S.b, Ogi T.a, Okuyama K.a
a Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, Japan
b Hiroshima Joint Research Center, Nanotechnology Particle Project, Japan Chemical Innovation Institute, Japan
c Department of Physics, Bandung Institute of Technology, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Silicon dioxide, titanium dioxide, aluminium dioxide, zirconium dioxide, and yttrium dioxide particles containing macropores with ordered, hexagonal closed packing structures were produced by spray pyrolysis. A mixture of a solution of the oxide source (nitrous metal) and a colloid comprised of polystyrene latex (PSL) particles was used. The process involved initial drying at low temperature to evaporate the solvent, followed by drying at high temperature to permit the pyrolysis reaction to occur and to decompose the PSL beads. This takes place in a vertical reactor and requires around 1-2 s. This method can, in principle, be used to produce various types of oxide particles containing ordered pores. It allows easy control of the particle size, pore size and space, and the porosity of particles. Bragg reflection of the powdered material was observed under ultraviolet irradiation. © 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Macropores,Polystyrene latex (PSL),Powder processing,Spray drying[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Nanostructure,Porous materials,Powder processing,Spray drying[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellowship for M.A. and F.I. are gratefully acknowledged. This work was supported by the New Energy and Industrial Technology Development Organization (NEDO)’s Nanotechnology Materials Program – Nanotechnology Particle Project based on fund provided by the Ministry of Economy, Trade, and Industry (METI), Japan. We thank Keisuke Kondo (Hiroshima University) for assistantship.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.actamat.2004.07.021[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]