[vc_empty_space][vc_empty_space]
Attractor solutions in Lorentz violating scalar-vector-tensor theory
Ariantoa,b, Zen F.P.a, Triyantaa, Gunara B.E.a
a THEPI Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia
b Department of Physics, Udayana University, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]We investigate properties of attractors for the scalar field in the Lorentz violating scalar-vector-tensor theory of gravity. In this framework, both the effective coupling and potential functions determine the stabilities of the fixed points. In the model, we consider the constants of the slope of the effective coupling and potential functions which lead to the quadratic effective coupling vector with the (inverse) power-law potential. For the case of a purely scalar field, there are only two stable attractor solutions in the inflationary scenario. In the presence of a barotropic fluid, the fluid dominated solution is absent. We find two scaling solutions: the kinetic scaling solution and the scalar field scaling solutions. We show the stable attractors in regions of (γ,ξ) parameter space and in a phase plane plot for different qualitative evolutions. From the standard nucleosynthesis, we derive the constraints for the value of the coupling parameter. © 2008 The American Physical Society.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1103/PhysRevD.77.123517[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]