Enter your keyword

2-s2.0-4644278918

[vc_empty_space][vc_empty_space]

Vortex dynamics across the second-peak field in SmLa0.8Sr 0.2CuO4-δ

Sutjahja I.M.a, Diantoro M.a,b, Nugroho A.A.a, Tjia M.O.a, Menovsky A.A., Franse J.J.M.

a Department of Physics, Institut Teknologi Bandung, Indonesia
b Department of Physics, University of Malang, Indonesia
c Van der Waals-Zeeman Instituut, Universiteit van Amsterdam, Netherlands

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Measurements of the temperature- and field-dependent magnetic relaxation data have been conducted on a superconducting T*-phase SmLa0.8Sr0.2CuO4-δ crystal in the vicinity of the second-peak field. The experimental data were analyzed to determine the current-dependent energy barrier, U(J), following a method proposed by Maley et al. The result was further investigated on the basis of weak collective pinning theory. It was found that the result of analysis on the temperature-dependent data was consistent with the theoretical description of thermal-disorder induced-interlayer-decoupling transition of the vortices, while its field-dependent data reveal the characteristic feature of elastic-plastic crossover of the vortex motion. © 2004 Elsevier B.V. All rights reserved.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Second-peak field transition,Vortex dynamics,Vortex motion,Weak collective pinning theory[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Magnetic relaxation,Second-peak field transition,T*-phase of SmLa0.8Sr0.2CuO 4-δ,Weak collective pinning theory[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work was carried out under the cooperation of Van der Waals–Zeeman Institute (FOM-ALMOS) and Department of Physics ITB supported by KNAW under project no. 95-BTM-33.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.physc.2003.12.055[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]