[vc_empty_space][vc_empty_space]
Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid
Girisuta B.a,b, Danon B.a, Manurung R.c, Janssen L.P.B.M.a, Heeres H.J.a
a Department of Chemical Engineering, University of Groningen, Netherlands
b Department of Chemical Engineering, Parahyangan Catholic University, Indonesia
c Biotechnology Research Center, Institut Teknologi Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]A comprehensive experimental and modelling study on the acid-catalysed hydrolysis of the water hyacinth plant (Eichhornia crassipes) to optimise the yield of levulinic acid (LA) is reported (T = 150-175 °C, CH2 SO4 = 0.1 s(-) 1 M, water hyacinth intake = 1-5 wt%). At high acid concentrations (>0.5 M), LA was the major organic acid whereas at low acid concentrations (<0.1 M) and high initial intakes of water hyacinth, the formation of propionic acid instead of LA was favoured. The highest yield of LA was 53 mol% (35 wt%) based on the amount of C6-sugars in the water hyacinth (T = 175 °C, CH2 SO4 = 1 M, water hyacinth intake = 1 wt%). The LA yield as a function of the process conditions was modelled using a kinetic model originally developed for the acid-catalysed hydrolysis of cellulose and good agreement between the experimental and modelled data was obtained. © 2008 Elsevier Ltd. All rights reserved.[/vc_column_text][vc_empty_space][vc_separator css=".vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}"][vc_empty_space][megatron_heading title="Author keywords" size="size-sm" text_align="text-left"][vc_column_text]Eichhornia crassipes,Kinetic modelling,Levulinic acid,Water Hyacinth[/vc_column_text][vc_empty_space][vc_separator css=".vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}"][vc_empty_space][megatron_heading title="Indexed keywords" size="size-sm" text_align="text-left"][vc_column_text]Acid hydrolysis,Green chemicals,Levulinic acid,Water hyacinth (Eichhornia crassipes)[/vc_column_text][vc_empty_space][vc_separator css=".vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}"][vc_empty_space][megatron_heading title="Funding details" size="size-sm" text_align="text-left"][vc_column_text]The authors would like to thank Shell B.V. for stimulating discussions and particularly the late Leo Petrus who showed great interest in this research area. Peter Evers is also acknowledged for conducting the GC–MS analysis. B.G. thanks the University of Groningen for financial support by an Ubbo Emmius Scholarship.[/vc_column_text][vc_empty_space][vc_separator css=".vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}"][vc_empty_space][megatron_heading title="DOI" size="size-sm" text_align="text-left"][vc_column_text]https://doi.org/10.1016/j.biortech.2008.02.045[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]