[vc_empty_space][vc_empty_space]
An interpolation method that minimizes an energy integral of fractional order
Gunawan H.a, Pranolo F.a, Rusyaman E.b
a Analysis and Geometry Group, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Indonesia
b Department of Mathematics, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]An interpolation method that minimizes an energy integral will be discussed. To be precise, given N+1 points (x 0,c 0), (x 1,c 1),…, (x N ,c N ) with 0=x 0<x 1<⋯<x N =1 and c 0=c N =0, we shall be interested in finding a sufficiently smooth function u on [0,1] that passes through these N+1 points and minimizes the energy integral , where u (α) denotes the fractional derivative of u of order α. As suggested in [1], a Fourier series approach as well as functional analysis arguments can be used to show that such a function exists and is unique. An iterative procedure to obtain the function will be presented and some examples will be given here. © 2008 Springer-Verlag Berlin Heidelberg.[/vc_column_text][vc_empty_space][vc_separator css=".vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}"][vc_empty_space][megatron_heading title="Author keywords" size="size-sm" text_align="text-left"][vc_column_text]Fractional derivatives,Fractional orders,Interpolation methods,Iterative procedures,Smooth functions[/vc_column_text][vc_empty_space][vc_separator css=".vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}"][vc_empty_space][megatron_heading title="Indexed keywords" size="size-sm" text_align="text-left"][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=".vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}"][vc_empty_space][megatron_heading title="Funding details" size="size-sm" text_align="text-left"][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=".vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}"][vc_empty_space][megatron_heading title="DOI" size="size-sm" text_align="text-left"][vc_column_text]https://doi.org/10.1007/978-3-540-87827-8_12[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]