[vc_empty_space][vc_empty_space]
Model of a tunneling current in an anisotropic Si/Si1-xGe x/Si heterostructure with a nanometer-thick barrier including the effect of parallel-perpendicular kinetic energy coupling
Hasanah L.a, Abdullah M.a, Sukirnoa, Winata T.a, Khairurrijala
a Physics of Electronic Materials Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]A theoretical model of an electron tunneling current in an anisotropic Si/Si1-xGex/Si heterostructure was developed. The parallel and perpendicular kinetic energies were coupled and the coupling was included in expressing the electron transmittance through the anisotropic heterostructure. The model was applied to the anisotropic Si(1 1 0)/Si 0.5Ge0.5/Si(1 1 0) heterostructure with a 25 nm thick strained Si0.5Ge0.5 potential barrier, in which each layer of the heterostructure has three valleys (valleys 1, 2 and 3) with different inverse effective mass tensors and a conduction band discontinuity of 216 meV. The Si(1 1 0)/SiGe structure implies that only the four equivalent valleys (valleys 1 and 2) are considered in calculations. It was found that the transmittance for valley 1 is the same as that for valley 2 due to the same barrier height. The transmittance decreases as the electron phase velocity increases because the electron phase velocity enhances the barrier height. Moreover, the total tunneling current density for the phase velocity higher than 3 × 105 m s-1 differs significantly from that obtained without including the kinetic energy coupling. As the electron phase velocity gets higher, the total tunneling current density lowers. This implies that the coupling effect cannot be ignored for electrons with high phase velocity. © 2008 IOP Publishing Ltd.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Barrier heights,Conduction band discontinuities,Coupling effects,Effective masses,Electron phase,Energy couplings,Heterostructure,Potential barriers,Theoretical models,Tunneling currents[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/0268-1242/23/12/125024[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]