Enter your keyword

2-s2.0-62549115261

[vc_empty_space][vc_empty_space]

Deformation of curved BPS domain walls and supersymmetric flows on 2d Kähler-Ricci soliton

Gunara B.E.a, Zen F.P.a

a Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Division, Institut Teknologi Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]We consider some aspects of the curved BPS domain walls and their supersymmetric Lorentz invariant vacua of the four dimensional N = 1 supergravity coupled to a chiral multiplet. In particular, the scalar manifold can be viewed as a two dimensional Kähler-Ricci soliton generating a one-parameter family of Kähler manifolds evolved with respect to a real parameter, τ. This implies that all quantities describing the walls and their vacua indeed evolve with respect to τ. Then, the analysis on the eigenvalues of the first order expansion of BPS equations shows that in general the vacua related to the field theory on a curved background do not always exist. In order to verify their existence in the ultraviolet or infrared regions one has to perform the renormalization group analysis. Finally, we discuss in detail a simple model with a linear superpotential and the Kähler-Ricci soliton considered as the Rosenau solution. © 2009 Springer-Verlag.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1007/s00220-009-0744-1[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]