[vc_empty_space][vc_empty_space]
Kähler-Ricci flow, Morse theory, and vacuum structure deformation of N = 1 supersymmetry in four dimensions
a Indonesia Center for Theoretical and Mathematical Physics (ICTMP) and Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]We address some aspects of four-dimensional chiral N = 1 supersymmetric theories on which the scalar manifold is described by Kähler geometry and can further be viewed as Kähler-Ricci soliton generating a one-parameter family of Kähler geometries. All couplings and solutions, namely the BPS domain walls and their supersymmetric Lorentz invariant vacua turn out to be evolved with respect to the flow parameter related to the soliton. Two models are discussed, namely N = 1 theory on Kähler-Einstein manifold and U(n) symmetric Kähler-Ricci soliton with positive definite metric. In the first case, we find that the evolution of the soliton causes topological change and correspondingly, modifies the Morse index of the nondegenerate vacua realized in the parity transformation of the Hessian matrix of the scalar potential after hitting singularity, which is natural in the global theory and for nondegenerate Minkowskian vacua of the local theory. However, such situation is not trivial in anti de Sitter vacua. In an explicit model, we find that this geometric (Kähler-Ricci) flow can also change the index of the vacuum before and after singularity. Finally in the second case, since around the origin the metric is diffeomorphic to CPn-1, we have to consider it in the asymptotic region. Our analysis shows that no index modification of vacua is present in both global and local theories. © 2009 International Press.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.4310/ATMP.2009.v13.n1.a7[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]