[vc_empty_space][vc_empty_space]
Adsorption of O2 on cobalt-n)pyrrole molecules from first-principles calculations
Dipojono H.K.a, Saputro A.G.a, Belkada R.a, Nakanishi H.b, Kasai H.b, David M.b, Sy Dy E.c
a Laboratory of Computational Materials Design, Research Group of Engineering Physics, Institut Teknologi Bandung Jln., Indonesia
b Department of Precision Science and Technology and Applied Physics, Osaka University, Japan
c National Research Council of Canada, Institute for Fuel Cell Innovation (NRC-IFCI), Canada
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]In order to clarify the adsorption mechanism of the O2 molecule on Co-polypyrrole composite metallo-organic catalyst, we have investigated the interaction between the molecule and Co-(n)pyrrole model clusters (n = 4; 6) using the density functional theory. The stable adsorption site of the O 2 molecule on Co-(4)pyrrole is found to be at the O-O center of mass located on top of the Co atom in side-on configuration, while for the case of Co-(6)pyrrole cluster, the O2 molecule is slightly deviated from the side-on configuration. The O-O bonds of the O2/Co-(4)pyrrole and the O2/Co-(6)pyrrole systems have elongated by 10.84 and 9.86%, respectively. The elongation mechanism of O2 on Co-(n)pyrrole is induced by the interaction between the cobalt d-orbitals and the O2 anti-bonding π* orbital, which results in a charge transfer from the cobalt atom toward the O2 molecule. This effect seems important in the adsorption of the O2 molecule on Co-(n)pyrrole. It is likely that the extra charge in the O2 molecule would fill its anti-bonding orbital and consequently weaken the O-O bond. In Co-(4)pyrrole, the elongation of the O2 bond is larger than that of Co-(6)pyrrole since a complete side-on configuration has more symmetric overlapping between the cobalt d-orbitals and the O2 anti-bonding orbital. © 2009 The Physical Society of Japan.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Co-polypyrrole composite,Density functional theory,Non-precious catalysts,Polymer electrolyte fuel cells[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1143/JPSJ.78.094710[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]