[vc_empty_space][vc_empty_space]
A model for transmission of partial resistance to anti-malarial drugs
Tasman H.a,d, Soewono E.a, Sidarto K.A.a, Syafruddin D.b, Rogers W.O.c
a Industrial and Financial Mathematics Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia
b Eijkman Institute for Molecular Biology, Indonesia
c United States Naval Medical Research Unit 2, Indonesia
d Department Ot Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Anti-malarial drug resistance has been identified in many regions for a long time. In this paper we formulate a mathematical model of the spread of anti-malarial drug resistance in the population. The model is suitable for malarial situations in developing countries. We consider the sensitive and resistant strains of malaria. There are two basic reproduction ratios corresponding to the strains. If the ratios corresponding to the infections of the sensitive and resistant strains are not equal and they are greater than one, then there exist two endemic non-coexistent equilibria. In the case where the two ratios are equal and they are greater than one, the coexistence of the sensitive and resistant strains exist in the population. It is shown here that the recovery rates of the infected host and the proportion of anti-malarial drug treatment play important roles in the spread of anti-malarial drug resistance. The interesting phenomena of “long-time” coexistence, which may explain the real situation in the field, could occur for long period of time when those parameters satisfy certain conditions. In regards to control strategy in the field, these results could give a good understanding of means of slowing down the spread of anti-malarial drug resistance.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Anti-malarial drug resistance,Basic reproduction ratio,Dynamical system,Mathematical epidemiology,Treatment proportion[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.3934/mbe.2009.6.649[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]