[vc_empty_space][vc_empty_space]
On the super edge-magic deficiencies of graphs
Ngurah A.A.G.a, Baskoro E.T.b, Simanjuntak R.b
a Department of Civil Engineering, Universitas Merdeka Malang, Indonesia
b Combinatorial Mathematics Research Group, Institut Teknologi Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]A graph G is called edge-magic if there exists a bijection f: V(G) ∪ E(G) → {1, 2, 3,…, |V(G) ∪ E(G)} such that f(x) + f(xy) + f(y) is a constant for every edge xy € E(G). A graph G is said to be super edge-magic if f(V(G)) = {1, 2, 3,…, |V(G)|}. Furthermore, the edge-magic deficiency of a graph G, μ(G), is defined as the minimum nonnegative integer n such that G∪nK1 is edge-magic. Similarly, the super edge-magic deficiency of a graph G, μ,s(G), is either the minimum nonnegative integer n such that G ∪ nKs is super edge-magic or +∞ if there exists no such integer n. In this paper, we present the super edge-magic deficiencies of some classes of graphs.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]