Enter your keyword

2-s2.0-70449637838

[vc_empty_space][vc_empty_space]

Particle system implementation using smoothed particle hydrodynamics (SPH) for lava flow simulation

Husni E.M.a, Hamdi K.a, Mardiono T.a

a School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Lava flow simulation is a sophisticated and complex phenomenon because a lot of parameters involved. A method employed to simulating lava flow is a Lagrangian approach which sees lava as fluid composed by particle system. Smoothed Particle Hydrodynamics (SPH) method is implemented for interaction between particles which is setting fluid components. Physical parameters obtained by particle based fluid, lava, are mass density, viscosity, pressure, surface tension, temperature and external force. The usage of the SPH method makes particle system possible to interact with other objects such as terrain, the closest neighbor particle using staggered grid method. Smoothing kernel function used here is Spiky and Poly6 kernel with high level of stability and accuracy. Collision detection between particles and terrain is using Sphere Plane Sweep Test method, and carpet rendering used is quadtree method. Lava flow product is realistic enough and also able to simulate some physical parameters. © 2009 IEEE.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Collision detection,External force,Fluid components,Lagrangian approaches,Lava flows,Mass densities,Particle systems,Physical parameters,Plane sweep,Quadtree methods,Smoothed particle hydrodynamics,Smoothed particle hydrodynamics methods,Smoothing kernels,SPH methods,Staggered grid[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Smoothing kernel,SPH,Staggered grid,Terrain[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICEEI.2009.5254788[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]