[vc_empty_space][vc_empty_space]
Robust adaptive control for robotic manipulator based on chattering free variable structure system
Mahayana D.a, Anwari S.b
a School of Electrical Engineering and Informatics, Bandung Institute of Technology, Indonesia
b Department of Electrotechnic ITENAS Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]In robotic manipulators there are many uncertainties such as dynamic parameters (eg., inertia and payload conditions), dynamical effects (e.g., complex nonlinear frictions), and unmodeled dynamics. Traditional linear controllers have many difficulties in treating these uncertainties. To overcome this problem, a robust adaptive control for robotic manipulator based on chattering free variable structure system is proposed. Conventional variable structure control (VSC) has important drawbacks limiting its practical applicability, such as chattering and excessive control energy. To alleviate the problems, the discontinuous part of the control signals in the conventional VSC are substituted by adaptive gain. Within this scheme, the adaptive gain are employed to approximate the unknown system’s uncertainties. The key feature of the controller is that prior knowledge of the system uncertainties is not required to guarantee the stability. Moreover, a theoretical proof of the stability and convergence of the proposed scheme using Lyapunov method is presented. To demonstrate the effectiveness of the proposed approach, a practical situation in robot control is simulated. © 2009 IEEE.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Adaptive control,Adaptive gain,Chattering free,Control energy,Control signal,Dynamic parameters,Dynamical effects,Key feature,Linear controllers,Nonlinear friction,Prior knowledge,Robot controls,Robotic manipulators,Robust-adaptive control,Stability and convergence,System uncertainties,Unmodeled dynamics[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Adaptive control,Lyapunov method,Robotic manipulators,Variable structure control[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICEEI.2009.5254779[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]