[vc_empty_space][vc_empty_space]
Deconvolution of VLBI images based on compressive sensing
a School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Direct inversion of incomplete visibility samples in VLBI (Very Large Baseline Interferometry) radio telescopes produces images with convolutive artifacts. Since proper analysis and interpretations of astronomical radio sources require a non-distorted image, and because filling all of sampling points in the uv-plane is an impossible task, image deconvolution has been one of central issues in the VLBI imaging. Up to now, the most widely used deconvolution algorithms are based on least-squares-optimization and maximum entropy method. In this paper, we propose a new algorithm that is based on an emerging paradigm called compressive sensing (CS). Under the sparsity condition, CS capable to exactly reconstructs a signal or an image, using only a few number of random samples. We show that CS is wellsuited with the VLBI imaging problem and demonstrate that the proposed method is capable to reconstruct a simulated image of radio galaxy from its incomplete visibility samples taken from elliptical trajectories in the uv-plane. The effectiveness of the proposed method is also demonstrated with an actual VLBI measured data of 3C459 asymmetric radiogalaxy observed by the VLA (Very Large Array). © 2009 IEEE.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Baseline interferometry,Basis pursuit,Basis Pursuits,Deconvolution algorithm,Direct inversion,Distorted images,Image deconvolution,Imaging problems,Least Square,Maximum entropy methods,Measured data,Radio galaxies,Radio sources,Random sample,Sampling points,Simulated images,Synthesis imaging,Very large arrays[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Basis pursuit,Clean,Compressive sensing,Deconvolution,Synthesis imaging,Very large array,VLBI[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICEEI.2009.5254805[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]