Enter your keyword

2-s2.0-73649128884

[vc_empty_space][vc_empty_space]

Small maximal matchings of random cubic graphs

Assiyatun H.a, Duckworth W.b

a Department of Mathematics, Institut Teknologi Bandung, Indonesia
b Mathematical Sciences Institute, Australian National University, Australia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]We consider the expected size of a smallest maximalmatching of cubic graphs. Firstly, we present a randomized greedy algorithm for finding a small maximal matching of cubic graphs.We analyze the averagecase performance of this heuristic on random n-vertex cubic graphs using differential equations. In this way, we prove that the expected size of the maximalmatching returned by the algorithm is asymptotically almost surely (a.a.s.) less than 0.34623n. We also give an existence proof which shows that the size of a smallest maximal matching of a random n-vertex cubic graph is a.a.s. less than 0.3214n. It is known that the size of a smallest maximal matching of a random n-vertex cubic graph is a.a.s. larger than 0.3158n. © 2009 Wiley Periodicals, Inc.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Average-case,Cubic,Cubic graph,Graphs,Greedy algorithms,Matchings,Maximal matchings,Random[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Cubic,Graphs,Matchings,Random[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1002/jgt.20434[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]