[vc_empty_space][vc_empty_space]
Preamble structure-based timing synchronization for IEEE 802.16e
Salbiyono A.a, Adiono T.a
a Bandung Institute of Technology, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]This paper proposes timing synchronization for IEEE 802.16e OFDMA downlink. The proposed scheme utilizes the conjugate symmetry property of preamble structure. Therefore, prior knowledge of actual transmitted preamble type is not required. Considering hardware complexity, this paper proposes a new single correlation function for 114 different structures of preamble in 802.16e OFDMA. As a consequence, this method eliminates need to cross correlation with all possible preamble. Comparing to conventional method, the correlation produces very high sharp peak that easy the determination of the start of preamble result. The simulation results show that the proposed synchronization method is suitable for multipath environment. Under ITU-B pedestrian channel, our proposed method can correctly identify all preambles at SNR larger than – 2dB, and under ITU-A vehicular channel, our proposed method can achieve reasonable performance at SNR larger than-1dB. ©2009 IEEE.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Conventional methods,Correlation function,Cross correlations,Different structure,Hardware complexity,IEEE 802.16e,Multipath environments,OFDMA downlink,Preamble structure,Prior knowledge,Simulation result,Symmetry properties,Synchronization method,Timing synchronization[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ISPACS.2009.5383838[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]