Enter your keyword

2-s2.0-77950938182

[vc_empty_space][vc_empty_space]

Study of thermoacoustic refrigeration with variations of resonator length and stack space

Sari D.P.a, Hendradjit W.a, Putra I.B.A.a

a Center for Instrumentation Technology and Automation, Institut Teknologi Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Thermoacoustic refrigeration is a refrigeration method that uses acoustic wave driver and gas fluid instead of refrigerant as working fluid. In this paper, the development of a small scale refrigeration system based on thernoacoustic principle is presented. The main apparatus is a resonator, which is designed with variations of resonator length and stack space. The experiment shows the appearance of the temperature gradient along the apparatus during the resonance. The experimental results showed that the combination of 75 cm, 70 cm, and 60 cm resonator lengths and 1 mm, 0,32 mm and 0,25 mm stack space showed the thermoacoustic phenomenon as predicted, while other variations did not. The calculation of acoustic power and COPcn showed that air is not a suitable working fluid. Therefore gas with less Prandtl Number, such as inert gas, is recommended as working fluid for better performance.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Acoustic power,Refrigeration methods,Refrigeration system,Resonator length,Small scale,Temperature gradient,Thermoacoustic refrigeration,Thermoacoustics,Working fluid[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]COPR,Resonator,Stack,Thermoacoustic[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICICI-BME.2009.5417269[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]