[vc_empty_space][vc_empty_space]
Effect of Cu layer thickness on giant magnetoresistance properties of NiCoFe/Cu/NiCoFe sandwich
Djamal M.a, Ramlia,b, Yulkiflia,b, Khairurrijala
a Theoretical High Energy Physics and Instrumentation Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia
b Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]The NiCoFe/Cu/NiCoFe sandwiches were grown onto Si (111) substrate by dc-opposed target magnetron sputtering (dc-OTMS) technique. The growth parameters are: temperature 100 °C, applied voltage 600 volt, flow rate of Ar gas 100 sccm, and growth pressure 5.2 x10-1 Torr. The effects of Cu layer thickness on giant magnetoresistance (GMR) property of NiCoFe/Cu/NiCoFe sandwich were studied. We have found that the giant magnetoresistance (GMR) ratio is varied depend on the non-magnetic (Cu) layer thickness. The variation of Cu layer thickness of NiCoFe/Cu/NiCoFe sandwich presents an oscillatory behavior of GMR ratio. This oscillation reflects the exchange coupling oscillations between ferromagnetic and antiferromagnetic states, which are caused by an oscillation in the sign of the interlayer exchange coupling between ferromagnetic layers. © 2009 SICE.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Applied voltages,Cu layers,Ferromagnetic and anti-ferromagnetic,Ferromagnetic layers,Growth parameters,Growth pressure,Interlayer exchange coupling,Layer thickness,Nonmagnetics,Opposed target magnetron sputtering,Oscillatory behaviors,Si(111) substrate,Target magnetron[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Exchange coupling,Layer thickness,Magnetoresistance,Opposed target magnetron sputtering[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]