[vc_empty_space][vc_empty_space]
Kaluza-klein two-brane-worlds cosmology at low energy
Feranie S.a, Ariantob,d, Zen F.P.c,d
a Jurusan Pendidikan Fisika, FPMIPA, Universitas Pendidikan Indonesia, Indonesia
b Department of Physics, Faculty of Mathematics and Natural Sciences, Udayana University, Indonesia
c Theoretical Physics Laboratory, THEPI Division, Mexico
d Indonesia Center for Theoretical and Mathematical Physics (ICTMP), Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]We study two (4+n)-dimensional branes embedded in (5+n)-dimensional spacetime. Using the gradient expansion approximation, we find that the effective theory is described by (4+n)-dimensional scalar-tensor gravity with a specific coupling function. Based on this theory we investigate the Kaluza-Klein two-brane-worlds cosmology at low energy, in both the static and the nonstatic internal dimensions. In the case of the static internal dimensions, the effective gravitational constant in the induced Friedmann equation depends on the equations of state of the brane matter, and the dark radiation term naturally appears. In the nonstatic case we take a relation between the external and internal scale factors of the form b(t)=aγ(t) in which the brane world evolves with two scale factors. In this case, the induced Friedmann equation on the brane is modified in the effective gravitational constant and the term proportional to a-4β. For dark radiation, we find γ=-2/(1+n). Finally, we discuss the issue of conformal frames which naturally arises with scalar-tensor theories. We find that the static internal dimensions in the Jordan frame may become nonstatic in the Einstein frame. © 2010 The American Physical Society.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1103/PhysRevD.81.084058[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]