Enter your keyword

2-s2.0-77953402271

[vc_empty_space][vc_empty_space]

Anharmonic oscillation effect on the Davydov-Scott monomer in a thermal bath

Sulaiman A.a,b,d, Zen F.P.a,d, Alatas H.c,d, Handoko L.T.e,f

a Theoretical Physics Laboratory, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia
b Badan Pengkajian Dan Penerapan Teknologi, BPPT Building II, Indonesia
c Theoretical Physics Division, Department of Physics, Bogor Agricultural University, Indonesia
d Indonesia Center for Theoretical and Mathematical Physics, Indonesia
e Group for Theoretical and Computational Physics, Research Center for Physics, Indonesian Institute of Sciences, Indonesia
f Department of Physics, University of Indonesia, Kampus UI Depok, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]The dynamics of Davydov-Scott monomer in a thermal bath with higher order amide-site’s displacement leads to anharmonic oscillation effect is investigated using full-quantum approach and the Lindblad formulation of master equation. The specific heat is calculated based on the thermodynamic partition function using the path integral method. The temperature dependence of the specific heat is studied. In the model the specific heat anomaly as pointed out in recent works by Ingold [Phys. Rev. E 79, 061105 (2009)] is also observed. However, it is found that the anomaly occurs at high-temperature region, and the anharmonic oscillation restores the positivity of specific heat. © 2010 The American Physical Society.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]A-thermal,Anharmonic,High temperature,Higher order,Lindblad,Master equations,Oscillation effects,Partition functions,Path integral method,Quantum approach,Temperature dependence[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1103/PhysRevE.81.061907[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]