Enter your keyword

2-s2.0-77954321459

[vc_empty_space][vc_empty_space]

Synthesis of oxide particles using a polymer-assisted spray pyrolysis reactor, and a percolation explanation of particle separation

Abdullah M.a, Khairurrijal K.a, Nuryadin B.W.a, Sustini E.a

a Bandung Institute of Technology, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]A vertical spray pyrolysis reactor was designed to produce separated/softly agglomerated oxide nanoparticles by dissolving a large amount of high molecular weight polymer into solutions of nitrous or acetic metals. The polymer played a role as a matrix that prevented the tendency of as-grown nuclei to make contacts inside the “polymer ball.” Decomposition of the “polymer ball” at the end stage of the reactor released separated nanoparticles. On the first attempt, we produced particles of zinc oxide and compound oxide of CuO/ZnO/Al2O3 at different parameters of synthesis. We found that the size of the particles decreased, as a fraction of the polymer, as the mass increased. We used a percolation theory to explain the particle separation mechanism inside the “polymer ball.” Separated nanoparticles were obtained if the volume fraction of the particles was far below the percolation threshold. Copyright © 2010 The Berkeley Electronic Press. All rights reserved.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]High-molecular weight polymers,Oxide nanoparticles,Oxide particles,Particle separation,Percolation theory,Percolation thresholds,Polymer-assisted,Pyrolysis reactor[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]high molecular weight polymer,oxide particles,percolation theory,percolation threshold,spray pyrolysis[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.2202/1542-6580.2293[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]