Enter your keyword

2-s2.0-77956464102

[vc_empty_space][vc_empty_space]

Decision support system for predicting tsunami characteristics along coastline areas based on database modelling development

Hadihardaja I.K.a, Latief H.a, Mulia I.E.a

a Water Resources Engineering Research Division, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Tsunamis are extraordinary occurrences that are difficult to identify; most of the incidents have no recorded predictions and tsunamis are generally infrequent events with poor data acquisition. The development of a tsunami database system has become important for improving the management of information with regard to a tsunami early warning system for vulnerable communities along coastline areas. Numerical modelling is usually employed to simulate the wave height and travel time of a wave arriving at a coastline area. However, numerical modelling for tsunami prediction is too time-consuming to be useful as an early warning system for the mitigation of tsunami-related damage and loss. Therefore, this model was used to develop a tsunami database system, based on hypothetical data, in order to develop a recognition pattern for a neural network learning process that will improve the speed and accuracy of tsunami prediction. To improve the accuracy of numerical modelling and observation, an adjustment was established for an advanced training process which used a generalised regression neural network. In other words, the training and testing datasets were obtained by correcting near-field tsunami numerical models from hypothetical earthquakes. The case study was performed on part of the Southern Pangandaran coastline in West Java, Indonesia. © IWA Publishing 2010.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Correction factor,Generalised regression neural network,Hard and soft computing,Tsunami database[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.2166/hydro.2010.001[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]